Information-Geometric Wireless Network Inference

We consider network tomography and monitoring in dynamic wireless systems and leverage analytical tools from optimization theory and information geometry to infer the invariant statistical network structures. We extend the classical network tomography problem beyond average link rate measurements an...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE Global Telecommunications Conference - GLOBECOM 2011 pp. 1 - 5
Main Authors Sagduyu, Y. E., Li, J. H.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2011
Subjects
Online AccessGet full text
ISBN9781424492664
1424492661
ISSN1930-529X
DOI10.1109/GLOCOM.2011.6134404

Cover

Abstract We consider network tomography and monitoring in dynamic wireless systems and leverage analytical tools from optimization theory and information geometry to infer the invariant statistical network structures. We extend the classical network tomography problem beyond average link rate measurements and develop a systematic optimization mechanism to infer the end-to-end wireless network behavior. This involves estimating the distributions of global network flow rates from the arbitrary statistics collected for the wireless link (channel) rates subject to the topology and link capacity constraints. We develop first a centralized network inference framework based on minimizing the distance of network flow rates from the prior information in the probability space that is spanned by the measurement constraints. Then, distributed implementation follows from message passing among the individual probes in the network and balances the complexity and convergence trade-offs. This formulation facilitates multi-scale multi-resolution inference of flow rates along with link capacity estimation. The underlying optimization framework for information-geometric network inference adapts to wireless network dynamics and offers robust operation with respect to the measurement errors and conflicts as well as the temporal and spatial variations in wireless networks.
AbstractList We consider network tomography and monitoring in dynamic wireless systems and leverage analytical tools from optimization theory and information geometry to infer the invariant statistical network structures. We extend the classical network tomography problem beyond average link rate measurements and develop a systematic optimization mechanism to infer the end-to-end wireless network behavior. This involves estimating the distributions of global network flow rates from the arbitrary statistics collected for the wireless link (channel) rates subject to the topology and link capacity constraints. We develop first a centralized network inference framework based on minimizing the distance of network flow rates from the prior information in the probability space that is spanned by the measurement constraints. Then, distributed implementation follows from message passing among the individual probes in the network and balances the complexity and convergence trade-offs. This formulation facilitates multi-scale multi-resolution inference of flow rates along with link capacity estimation. The underlying optimization framework for information-geometric network inference adapts to wireless network dynamics and offers robust operation with respect to the measurement errors and conflicts as well as the temporal and spatial variations in wireless networks.
Author Li, J. H.
Sagduyu, Y. E.
Author_xml – sequence: 1
  givenname: Y. E.
  surname: Sagduyu
  fullname: Sagduyu, Y. E.
  email: ysagduyu@i-a-i.com
  organization: Intell. Autom. Inc., Rockville, MD, USA
– sequence: 2
  givenname: J. H.
  surname: Li
  fullname: Li, J. H.
  email: jli@i-a-i.com
  organization: Intell. Autom. Inc., Rockville, MD, USA
BookMark eNpVj9FKwzAUhiNOcJt7gt30BVpPkpOkuZSi26DaG0XvRpqeQHRtJS2Ib6_gbrz6-eDjg3_FFsM4EGNbDgXnYG93dVM1j4UAzgvNJSLgBdtYU3IUiFbosrz8xxoXbMmthFwJ-3bNVtP0DqCwVHzJ4DCEMfVujuOQ72jsaU7RZ68x0YmmKXui-WtMH9mvRokGTzfsKrjTRJvzrtnLw_1ztc_rZneo7uo8cqPmXMgguEaPUrrWOxCdky2Y4JQ3QpbBdGCEMspK6rxA4ihBAzrQIRDqVq7Z9q8biej4mWLv0vfxfFj-ADPsSMQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/GLOCOM.2011.6134404
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424492688
9781424492671
1424492688
142449267X
EndPage 5
ExternalDocumentID 6134404
Genre orig-research
GroupedDBID 29I
6IE
6IH
6IK
6IM
AAJGR
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-23f2164c433abca02da3b07fa5c7238f7d07257593edc24e1430604a06ffe46b3
IEDL.DBID RIE
ISBN 9781424492664
1424492661
ISSN 1930-529X
IngestDate Wed Aug 27 03:39:32 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-23f2164c433abca02da3b07fa5c7238f7d07257593edc24e1430604a06ffe46b3
PageCount 5
ParticipantIDs ieee_primary_6134404
PublicationCentury 2000
PublicationDate 2011-Dec.
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-Dec.
PublicationDecade 2010
PublicationTitle 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011
PublicationTitleAbbrev GLOCOM
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0054851
ssj0000669127
Score 1.4805186
Snippet We consider network tomography and monitoring in dynamic wireless systems and leverage analytical tools from optimization theory and information geometry to...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Convergence
Heuristic algorithms
Inference algorithms
Noise measurement
Probability distribution
Tomography
Wireless networks
Title Information-Geometric Wireless Network Inference
URI https://ieeexplore.ieee.org/document/6134404
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDh0SLeysCIW8d2Hp4r2oJoy0ClbpXtOBICWoTShV_P2XnwEANbksHJ6Sx_313uvgO4wpNPcaoFEanmBDdFSlIZUSKQvGeMqdD6_orpLJ4sxN0yWrbguumFsdb64jPbd5f-X362MVuXKhsg9Dg5uza0k0SWvVpNPgWhU4asCbaQiPvRi8hPKAZbclk3dUmHSLXWU3UvKjmikMrB-H4-nE9Lbc_qfT8Gr3jcGe3BtP7istzkub8tdN98_BJz_K9J-9D76vALHhrsOoCWXR_C7jdxwi7QqlPJeY6M7ebVzd4ygSuXfcHjMZiVBeTBbb1gDxajm8fhhFTzFcgTkoaCMJ4zjJaM4FxpoyjLFNc0yVVk3CiyPMlowtwAT24zw4RFauWkdhSN89yKWPMj6Kw3a3sMgUrjSKaWomtxwZjrNA9FkmnDkVBQpk6g62xfvZUSGqvK7NO_H5_Bjk_d-qqRc-gU71t7gdhf6Evv9E9oLqP2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VcgAuLC1iJweOuHVsZztXdIGm5dBKvVV24kgIaBFKL3w9Y2dhEQduSQ5OLFueN5N57wHc4MknOVWCiFBxgpsiJGHkUSIQvKeMSVdbfkU88Ydzcb_wFg24rbkwWmvbfKY75tL-y0_XycaUyroYeoyc3RZse5hVBAVbq66oYPCMXFanWwjFrfkiIhSK6Va0qGhdkYlJldpTeS9KQSKXRt3BeNqbxoW6Z_nGH9YrNvL09yGuvrloOHnubHLVST5-yTn-d1IH0P7i-DmPdfQ6hIZeHcHeN3nCFtCSq2TWjgz0-tW4byWOaZh9wQPSmRQt5M6oGrAN8_7drDckpcMCeULYkBPGM4b5UiI4lyqRlKWSKxpk0kuMGVkWpDRgxsKT6zRhQiO4MmI7kvpZpoWv-DE0V-uVPgFHhr4XhZri4uKAPldh5oogVQlHSEGZPIWWmfvyrRDRWJbTPvv78TXsDGfxeDkeTR7OYdcWcm0PyQU08_eNvkQkkKsruwE-AUGAp0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Global+Telecommunications+Conference+-+GLOBECOM+2011&rft.atitle=Information-Geometric+Wireless+Network+Inference&rft.au=Sagduyu%2C+Y.+E.&rft.au=Li%2C+J.+H.&rft.date=2011-12-01&rft.pub=IEEE&rft.isbn=9781424492664&rft.issn=1930-529X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FGLOCOM.2011.6134404&rft.externalDocID=6134404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1930-529X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1930-529X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1930-529X&client=summon