Design of adaptive moving-target tracking control for vision-based mobile robot
This study constructs an adaptive moving-target tracking control (AMTC) scheme via a dynamic Petri recurrent-fuzzy-neural-network (DPRFNN) for a vision-based mobile robot with a tilt camera. First, a continuously adaptive mean shift (CAMS) algorithm is adopted for the moving-object detection, and a...
Saved in:
| Published in | IEEE Symposium on Computational Intelligence in Control and Automation (Print) pp. 194 - 199 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.04.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2328-1448 |
| DOI | 10.1109/CICA.2013.6611684 |
Cover
| Abstract | This study constructs an adaptive moving-target tracking control (AMTC) scheme via a dynamic Petri recurrent-fuzzy-neural-network (DPRFNN) for a vision-based mobile robot with a tilt camera. First, a continuously adaptive mean shift (CAMS) algorithm is adopted for the moving-object detection, and a model-based conventional sliding-mode control (CSMC) strategy is introduced. Moreover, it further designs a model-free AMTC scheme with a DPRFNN for imitating the CSMC strategy for relaxing the control design dependent on detailed system information and alleviating chattering phenomena caused by the inappropriate selection of uncertainty bounds. In addition, a switching path-planning scheme plus the AMTC is designed without detailed environmental information, large memory size and heavy computation burden for the obstacle avoidance of a mobile robot. Furthermore, numerical simulations are given to verify the effectiveness of the proposed AMTC scheme under different target tracking, and its superiority is indiented in comparison with the CSMC System |
|---|---|
| AbstractList | This study constructs an adaptive moving-target tracking control (AMTC) scheme via a dynamic Petri recurrent-fuzzy-neural-network (DPRFNN) for a vision-based mobile robot with a tilt camera. First, a continuously adaptive mean shift (CAMS) algorithm is adopted for the moving-object detection, and a model-based conventional sliding-mode control (CSMC) strategy is introduced. Moreover, it further designs a model-free AMTC scheme with a DPRFNN for imitating the CSMC strategy for relaxing the control design dependent on detailed system information and alleviating chattering phenomena caused by the inappropriate selection of uncertainty bounds. In addition, a switching path-planning scheme plus the AMTC is designed without detailed environmental information, large memory size and heavy computation burden for the obstacle avoidance of a mobile robot. Furthermore, numerical simulations are given to verify the effectiveness of the proposed AMTC scheme under different target tracking, and its superiority is indiented in comparison with the CSMC System |
| Author | Rong-Jong Wai You-Wei Lin |
| Author_xml | – sequence: 1 surname: You-Wei Lin fullname: You-Wei Lin organization: Dept. of Electr. Eng., Yuan Ze Univ., Chungli, Taiwan – sequence: 2 surname: Rong-Jong Wai fullname: Rong-Jong Wai organization: Dept. of Electr. Eng., Yuan Ze Univ., Chungli, Taiwan |
| BookMark | eNotj9FKwzAYhSNMcJt7APEmL9CaP0nT9FKqTmGwG70eSfq3RLtkpKHg21twV4cD5xzOtyGrEAMS8gCsBGDNU_vRPpecgSiVAlBa3pANSFWLSjeCr8iaC64LkFLfkd00fTPGBGita74mxxec_BBo7KnpzCX7Gek5zj4MRTZpwExzMu5n8dTFkFMcaR8Tnf3kYyismbBb8taPSFO0Md-T296ME-6uuiVfb6-f7XtxOO6Xm4fCQ13lAjohJGgQDYpaaocKsLK1tkw7C1Y6bHjVSLdQSewccgmGmYorWy8NZsSWPP7vekQ8XZI_m_R7uvKLPwi1UJU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CICA.2013.6611684 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 1467358932 9781467358934 |
| EndPage | 199 |
| ExternalDocumentID | 6611684 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i175t-1d33418139e3748ce61e5b78b08cb1b4ce92594c2014edce241a0a526b79e30a3 |
| IEDL.DBID | RIE |
| ISSN | 2328-1448 |
| IngestDate | Wed Aug 27 04:39:03 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-1d33418139e3748ce61e5b78b08cb1b4ce92594c2014edce241a0a526b79e30a3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6611684 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-April |
| PublicationDateYYYYMMDD | 2013-04-01 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-April |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE Symposium on Computational Intelligence in Control and Automation (Print) |
| PublicationTitleAbbrev | CICA |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003188872 |
| Score | 1.5077488 |
| Snippet | This study constructs an adaptive moving-target tracking control (AMTC) scheme via a dynamic Petri recurrent-fuzzy-neural-network (DPRFNN) for a vision-based... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 194 |
| SubjectTerms | Cameras Mobile robots Robot kinematics Robot vision systems Vectors Wheels |
| Title | Design of adaptive moving-target tracking control for vision-based mobile robot |
| URI | https://ieeexplore.ieee.org/document/6611684 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDh0SIoD3lgxGnsOK8RFaqCVGCgUrfKr0gI0VRRuvDrOTuhPMTAlChKLOsc33d3_u4O4NLqnPMi0tQUcUiF0cLpwZSmJmZWCdx-kct3nj0k07m4X8SLDlxtc2GstZ58ZgN368_yTak3LlQ2QixhSSa60E2zpMnV2sZT8N_E_cJ9LzmOjhG6He0hJgvz0fhufO14XFHQjvGjmYrHkskezD5n0VBIXoNNrQL9_qtA43-nuQ-Dr6w98rTFowPo2NUh7H4rONiHxxtP2CBlQaSRa6fqyJuPKdCGEk7qSmoXPScth52gUUuaBHTqEM_g-wo1CalKVdYDmE9un8dT2rZUoC9oJ9SUmQhhK0Ozz7q6M9omzMYqzVSYacWU0DZHf0hoFJVw_FDEdxnKmCcqxS9CGR1Bb1Wu7DGQgsWSS1zizOBIeNFoi0VJmhvGubLsBPpONMt1UzVj2Upl-PfjU9jhvtGE48ScQa-uNvYc4b5WF36dPwASmKiQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGYCFR0G88cCI09ix8xhRoWqhLQyt1K3yKxJCNFWVLvx6zk4oDzEwJYoSyzrH992dv7tD6NrqjLE80sTkIiTcaO70YEISI6hVHLZf5PKdh6O4N-EPUzFtoJt1Loy11pPPbOBu_Vm-KfTKhcragCU0TvkG2hScc1Fla60jKvB3wo5hvpscA9cIHI_6GJOGWbvT79w6JlcU1KP8aKfi0aS7i4af86hIJK_BqlSBfv9VovG_E91Dh195e_h5jUj7qGHnB2jnW8nBFnq685QNXORYGrlwyg6_-agCqUjhuFxK7eLnuGaxYzBrcZWCThzmGXhfgS7By0IV5SGadO_HnR6pmyqQF7AUSkJNBMCVguFnXeUZbWNqhUpSFaZaUcW1zcAj4hpExR1DFBBehlKwWCXwRSijI9ScF3N7jHBOhWQSFjk1MBJcNFhjUZxkhjKmLD1BLSea2aKqmzGrpXL69-MrtNUbDwezQX_0eIa2mW874Rgy56hZLlf2AsC_VJd-zT8AGF6r3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Symposium+on+Computational+Intelligence+in+Control+and+Automation+%28Print%29&rft.atitle=Design+of+adaptive+moving-target+tracking+control+for+vision-based+mobile+robot&rft.au=You-Wei+Lin&rft.au=Rong-Jong+Wai&rft.date=2013-04-01&rft.pub=IEEE&rft.issn=2328-1448&rft.spage=194&rft.epage=199&rft_id=info:doi/10.1109%2FCICA.2013.6611684&rft.externalDocID=6611684 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-1448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-1448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-1448&client=summon |