Adaptive Chosen-Plaintext Correlation Power Analysis

Yongdae K ea al. poposed biasing power traces to improve correlation in power analysis attack in 2010. However this method abandons large numbers of power traces which is unreasonable in comparison with traditional CPA. In this paper, the traces acquirement process is divided into two stages. In the...

Full description

Saved in:
Bibliographic Details
Published in2014 Tenth International Conference on Computational Intelligence and Security pp. 494 - 498
Main Authors Wenjing Hu, Liji Wu, An Wang, Xinjun Xie, Zhihui Zhu, Shun Luo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2014
Subjects
Online AccessGet full text
DOI10.1109/CIS.2014.94

Cover

Abstract Yongdae K ea al. poposed biasing power traces to improve correlation in power analysis attack in 2010. However this method abandons large numbers of power traces which is unreasonable in comparison with traditional CPA. In this paper, the traces acquirement process is divided into two stages. In the first stage, some plaintexts are chosen randomly and two most probable key byte candidates are recovered. In the second stage, we adaptively choose specific plaintexts corresponding to the traces with high signal-to-noise ratio, encrypt them, and acquire the second batch of traces. So the attack can be finished with fewer traces. According to our experiments on AT89S52 software implementation of AES, getting the same success rate 0.955, our adaptive chosen-plaintext CPA only requires 78.9% traces of traditional CPA. Our proposal can be implemented by automatic software through two interactions with the AT89S52.
AbstractList Yongdae K ea al. poposed biasing power traces to improve correlation in power analysis attack in 2010. However this method abandons large numbers of power traces which is unreasonable in comparison with traditional CPA. In this paper, the traces acquirement process is divided into two stages. In the first stage, some plaintexts are chosen randomly and two most probable key byte candidates are recovered. In the second stage, we adaptively choose specific plaintexts corresponding to the traces with high signal-to-noise ratio, encrypt them, and acquire the second batch of traces. So the attack can be finished with fewer traces. According to our experiments on AT89S52 software implementation of AES, getting the same success rate 0.955, our adaptive chosen-plaintext CPA only requires 78.9% traces of traditional CPA. Our proposal can be implemented by automatic software through two interactions with the AT89S52.
Author Wenjing Hu
An Wang
Zhihui Zhu
Xinjun Xie
Shun Luo
Liji Wu
Author_xml – sequence: 1
  surname: Wenjing Hu
  fullname: Wenjing Hu
  email: hwj12@mails.tsinghua.edu.cn
  organization: Inst. of Microelectron., Tsinghua Univ., Beijing, China
– sequence: 2
  surname: Liji Wu
  fullname: Liji Wu
  email: lijiwu@mail.tsinghua.edu.cn
  organization: Inst. of Microelectron., Tsinghua Univ., Beijing, China
– sequence: 3
  surname: An Wang
  fullname: An Wang
  email: wanganl@mail.tsinghua.edu.cn
  organization: Inst. of Microelectron., Tsinghua Univ., Beijing, China
– sequence: 4
  surname: Xinjun Xie
  fullname: Xinjun Xie
  email: 64558804@163.com
  organization: Shanghai Gen. Recognition Technol. Inst., Shanghai, China
– sequence: 5
  surname: Zhihui Zhu
  fullname: Zhihui Zhu
  email: simple_zhu@126.com
  organization: Shanghai Gen. Recognition Technol. Inst., Shanghai, China
– sequence: 6
  surname: Shun Luo
  fullname: Shun Luo
  email: lawbringer@126.com
  organization: Shanghai Gen. Recognition Technol. Inst., Shanghai, China
BookMark eNotzEFLwzAYgOEICurWk0cv_QOt-ZovSXMsRd1g4EB3HknzFQM1GU1R9-8V9PSenveWXcYUibE74DUANw_99rVuOGBt8IIVRreA2hiNQuhrVuQcHG-UVqhavGHYeXtawieV_XvKFKv9ZENc6Hsp-zTPNNklpFju0xfNZRftdM4hr9nVaKdMxX9X7PD0-NZvqt3L87bvdlUALZcK3EDNOJrGaiUcovONASQpAIdWO_KgrB-5s14qKaQdWgnuFzgcJI7eiRW7__sGIjqe5vBh5_NRc1AGpfgBkEJFvA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIS.2014.94
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore (NTUSG)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479974337
147997434X
1479974331
9781479974344
EndPage 498
ExternalDocumentID 7016945
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-1bce2ff92a763b44bd2914e5314c87bed16adf0bad56535ac851b2ffb4c54fdb3
IEDL.DBID RIE
IngestDate Wed Dec 20 05:18:54 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-1bce2ff92a763b44bd2914e5314c87bed16adf0bad56535ac851b2ffb4c54fdb3
PageCount 5
ParticipantIDs ieee_primary_7016945
PublicationCentury 2000
PublicationDate 2014-Nov.
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-Nov.
PublicationDecade 2010
PublicationTitle 2014 Tenth International Conference on Computational Intelligence and Security
PublicationTitleAbbrev CIS
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764684
Score 1.6153519
Snippet Yongdae K ea al. poposed biasing power traces to improve correlation in power analysis attack in 2010. However this method abandons large numbers of power...
SourceID ieee
SourceType Publisher
StartPage 494
SubjectTerms Adaptation models
adaptive chosen-plaintext attack
Advanced Encryption Standard
Correlation
Correlation coefficient
correlation power analysis
Encryption
Hamming weight
Hamming weight power model
Signal to noise ratio
Title Adaptive Chosen-Plaintext Correlation Power Analysis
URI https://ieeexplore.ieee.org/document/7016945
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL3UrlyptOKbWbg003ncZDJLGSxVqBS00F3JTTIoyrToFMSvN5lpq4gLdyEQ8s4JyT3nAFy6DaYcsnEWizJjqAlZLqVlJnboQw5QSu3JyeN7MZri3YzPOnC15cJYa5vgMxv6ZPOXbxZ65Z_KBpmXDkG-AzuZFC1Xa7N2EpEJFBLXFLw4ygfF7YMP3cLQGxL_sE5pkGO4B-NNnW3AyEu4qinUn7_kGP_bqH3of3P0gskWfQ6gY6se4LVRS3-ABcXT4t1WbPKqvCDERx0U3oajDXwLJt4aLdjokfRhOrx5LEZs7YvAnh3Y1ywmbZOyzBPlDgdCJJPkMVq3m1DLjKyJhTJlRMq421rKlXa3KnIFCDXH0lB6CN1qUdkjCFIyJsdUGVEiJpFRJCOuEklu0gTX-TH0fI_ny1b6Yr7u7Mnf2aew6we8peqdQbd-W9lzh9k1XTST9QVhCJie
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFL3UutCVSiu-nYVLM53HTWZmKYOlalsKttBdyRNFmRadgvj1JjNtFXHhLgRC3jkhueccgCu7wbhFNkpCZhKCUiDJ0lQTFVr0ERZQjHTk5MGQ9SZ4P6XTBlxvuDBa6yr4TPsuWf3lq7lcuqeyTuKkQ5BuwTZFRFqztdarJ2IJQ5biioQXBlknv3t0wVvoO0viH-YpFXZ092CwrrUOGXnxl6Xw5ecvQcb_Nmsf2t8sPW-0wZ8DaOiiBXij-MIdYV7-NH_XBRm9cicJ8VF6uTPiqEPfvJEzR_PWiiRtmHRvx3mPrJwRyLOF-5KEQurImCzi9ngQiEJFWYja7ieUaSK0ChlXJhBc2ftaTLm09yphCwiUFI0S8SE0i3mhj8CLhVIZxlwxgxgFios0oDxKhZ02RmV2DC3X49miFr-YrTp78nf2Jez0xoP-rH83fDiFXTf4NXHvDJrl21KfWwQvxUU1cV-P8pvr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Tenth+International+Conference+on+Computational+Intelligence+and+Security&rft.atitle=Adaptive+Chosen-Plaintext+Correlation+Power+Analysis&rft.au=Wenjing+Hu&rft.au=Liji+Wu&rft.au=An+Wang&rft.au=Xinjun+Xie&rft.date=2014-11-01&rft.pub=IEEE&rft.spage=494&rft.epage=498&rft_id=info:doi/10.1109%2FCIS.2014.94&rft.externalDocID=7016945