ImageNet: A large-scale hierarchical image database
The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce her...
Saved in:
| Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 248 - 255 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.06.2009
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1424439922 9781424439928 |
| ISSN | 1063-6919 1063-6919 |
| DOI | 10.1109/CVPR.2009.5206848 |
Cover
| Abstract | The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called "ImageNet", a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond. |
|---|---|
| AbstractList | The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called "ImageNet", a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond. |
| Author | Kai Li Li Fei-Fei Li-Jia Li Wei Dong Jia Deng Socher, Richard |
| Author_xml | – sequence: 1 surname: Jia Deng fullname: Jia Deng email: jiadeng@cs.princeton.edu organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA – sequence: 2 surname: Wei Dong fullname: Wei Dong email: wdong@cs.princeton.edu organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA – sequence: 3 givenname: Richard surname: Socher fullname: Socher, Richard email: rsocher@cs.princeton.edu organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA – sequence: 4 surname: Li-Jia Li fullname: Li-Jia Li email: jial@cs.princeton.edu organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA – sequence: 5 surname: Kai Li fullname: Kai Li email: li@cs.princeton.edu organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA – sequence: 6 surname: Li Fei-Fei fullname: Li Fei-Fei email: feifeili@cs.princeton.edu organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA |
| BookMark | eNpNj89Kw2AQxD-1gk3tA4iXvEDi7n7_vZVStVBURL2WTbJpI7FKkotvb8UKnobhNwwziRrtPnai1AVCjgjxav76-JQTQMwtgQsmHKlp9AENGaNjRDxWYwSnMxcxnqjkDxCN_oEzlfT9GwBpTzBWevnOG7mX4TqdpS13G8n6kltJt4103JXbZu_S5ieUVjxwwb2cq9Oa216mB52ol5vF8_wuWz3cLuezVdagt0OGFKmyQaymkg0Yi2J0QOspgq8j1eR0VbAwEZalg8AWQ1FF0ca7UIqeqMvf3kZE1p_dfkX3tT6c198PvUjk |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2009.5206848 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 9781424439911 1424439914 |
| EISSN | 1063-6919 |
| EndPage | 255 |
| ExternalDocumentID | 5206848 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-i175t-1292d58e532ca40451e4381572907f92f263dbaea221cc608a518bd9e34768ce3 |
| IEDL.DBID | RIE |
| ISBN | 1424439922 9781424439928 |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 02:43:40 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i175t-1292d58e532ca40451e4381572907f92f263dbaea221cc608a518bd9e34768ce3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_5206848 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-June |
| PublicationDateYYYYMMDD | 2009-06-01 |
| PublicationDate_xml | – month: 06 year: 2009 text: 2009-June |
| PublicationDecade | 2000 |
| PublicationTitle | 2009 IEEE Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0023720 ssj0000453166 ssj0003211698 |
| Score | 2.4293137 |
| Snippet | The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 248 |
| SubjectTerms | Explosions Image databases Image retrieval Information retrieval Internet Large-scale systems Multimedia databases Ontologies Robustness Spine |
| Title | ImageNet: A large-scale hierarchical image database |
| URI | https://ieeexplore.ieee.org/document/5206848 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMH6nB48W1nYtnTdDJGgCIUYMN7KtrwlRwci4-Nfbdt2MxoO3vZcl29pt7_e-fg-hK2uDWa6AEhMLRaw9piRRkSHa84FpalI_vWEyleN5_LAQiwa6rnthAMAXn0HPHfpcvt7kOxcq6wsWSRWrJmoOlCx7tep4ioUmnAZo4mRuPRuZ1BkF5qax-Myn5EQmNKmavDwxa8X9FGQV0p80SvrD59ljSWsZrv5jDIu3QqM2mlT3XxafvPR2RdbLP39RO_73AfdR97vfD89qS3aAGrA-RO0AUHH4_LdWVc2AqHQdxO_f7B9pCsUNvsWvrqycbO22A3Yztn2Wwkp45U7CrhrVWc0umo_unoZjEgYxkJVFFwWxmIBpoUBwlqexY6QBxwwmLDCPBiZhhkmusxRSxmiey0ilgqpMJ8Bj683kwI9Qa71ZwzHCVGfGsQ4Kk1lHRudKGwapY4hJFVjf5gR13LIs30uujWVYkdO_1Wdor8zuuKjIOWoVHzu4sCChyC792_EFLZmvhQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXi0sH7NzpshElAgxIDhRrb1LSEqGBkX_3rbrsNoPHjbe1mytF36fu_r9xC6MjaYpQooyYRUxNhjSiIVZEQ7PjBNs9hNbxgMw-5EPEzltIKuN70wAOCKz6BpH10uXy_TtQ2VtSQLQiXUFtqWQghZdGttIioGnHDqwYmVufFtwmiTU2B2HovLfYachBGNyjYvR81asj95WfkEKA2iVvt59FQQW_rv_xjE4uxQp4YG5QqK8pOX5jpPmunnL3LH_y5xDzW-O_7waGPL9lEFFgeo5iEq9hfAyqjKKRClro54783cSUPIb_EdfrWF5WRlDh6wnbLt8hRGwnP7Erb1qNZuNtCkcz9ud4kfxUDmBl_kxKACpqUCyVkaC8tJA5YbTBpoHtxkEctYyHUSQ8wYTdMwULGkKtERcGH8mRT4Iaoulgs4QpjqJLO8gzJLjCujU6UzBrHliIkVGO_mGNXttszeC7aNmd-Rk7_Vl2inOx70Z_3e8PEU7Ra5HhsjOUPV_GMN5wYy5MmF-1O-AJnpstI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=ImageNet%3A+A+large-scale+hierarchical+image+database&rft.au=Jia+Deng&rft.au=Wei+Dong&rft.au=Socher%2C+Richard&rft.au=Li-Jia+Li&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=248&rft.epage=255&rft_id=info:doi/10.1109%2FCVPR.2009.5206848&rft.externalDocID=5206848 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |