ImageNet: A large-scale hierarchical image database

The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce her...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 248 - 255
Main Authors Jia Deng, Wei Dong, Socher, Richard, Li-Jia Li, Kai Li, Li Fei-Fei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text
ISBN1424439922
9781424439928
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2009.5206848

Cover

Abstract The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called "ImageNet", a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.
AbstractList The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called "ImageNet", a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.
Author Kai Li
Li Fei-Fei
Li-Jia Li
Wei Dong
Jia Deng
Socher, Richard
Author_xml – sequence: 1
  surname: Jia Deng
  fullname: Jia Deng
  email: jiadeng@cs.princeton.edu
  organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA
– sequence: 2
  surname: Wei Dong
  fullname: Wei Dong
  email: wdong@cs.princeton.edu
  organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA
– sequence: 3
  givenname: Richard
  surname: Socher
  fullname: Socher, Richard
  email: rsocher@cs.princeton.edu
  organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA
– sequence: 4
  surname: Li-Jia Li
  fullname: Li-Jia Li
  email: jial@cs.princeton.edu
  organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA
– sequence: 5
  surname: Kai Li
  fullname: Kai Li
  email: li@cs.princeton.edu
  organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA
– sequence: 6
  surname: Li Fei-Fei
  fullname: Li Fei-Fei
  email: feifeili@cs.princeton.edu
  organization: Dept. of Comput. Sci., Princeton Univ., Princeton, NJ, USA
BookMark eNpNj89Kw2AQxD-1gk3tA4iXvEDi7n7_vZVStVBURL2WTbJpI7FKkotvb8UKnobhNwwziRrtPnai1AVCjgjxav76-JQTQMwtgQsmHKlp9AENGaNjRDxWYwSnMxcxnqjkDxCN_oEzlfT9GwBpTzBWevnOG7mX4TqdpS13G8n6kltJt4103JXbZu_S5ieUVjxwwb2cq9Oa216mB52ol5vF8_wuWz3cLuezVdagt0OGFKmyQaymkg0Yi2J0QOspgq8j1eR0VbAwEZalg8AWQ1FF0ca7UIqeqMvf3kZE1p_dfkX3tT6c198PvUjk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2009.5206848
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781424439911
1424439914
EISSN 1063-6919
EndPage 255
ExternalDocumentID 5206848
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-1292d58e532ca40451e4381572907f92f263dbaea221cc608a518bd9e34768ce3
IEDL.DBID RIE
ISBN 1424439922
9781424439928
ISSN 1063-6919
IngestDate Wed Aug 27 02:43:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-1292d58e532ca40451e4381572907f92f263dbaea221cc608a518bd9e34768ce3
PageCount 8
ParticipantIDs ieee_primary_5206848
PublicationCentury 2000
PublicationDate 2009-June
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-June
PublicationDecade 2000
PublicationTitle 2009 IEEE Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000453166
ssj0003211698
Score 2.4293137
Snippet The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and...
SourceID ieee
SourceType Publisher
StartPage 248
SubjectTerms Explosions
Image databases
Image retrieval
Information retrieval
Internet
Large-scale systems
Multimedia databases
Ontologies
Robustness
Spine
Title ImageNet: A large-scale hierarchical image database
URI https://ieeexplore.ieee.org/document/5206848
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AkydUMH6nB48W1nYtnTdDJGgCIUYMN7KtrwlRwci4-Nfbdt2MxoO3vZcl29pt7_e-fg-hK2uDWa6AEhMLRaw9piRRkSHa84FpalI_vWEyleN5_LAQiwa6rnthAMAXn0HPHfpcvt7kOxcq6wsWSRWrJmoOlCx7tep4ioUmnAZo4mRuPRuZ1BkF5qax-Myn5EQmNKmavDwxa8X9FGQV0p80SvrD59ljSWsZrv5jDIu3QqM2mlT3XxafvPR2RdbLP39RO_73AfdR97vfD89qS3aAGrA-RO0AUHH4_LdWVc2AqHQdxO_f7B9pCsUNvsWvrqycbO22A3Yztn2Wwkp45U7CrhrVWc0umo_unoZjEgYxkJVFFwWxmIBpoUBwlqexY6QBxwwmLDCPBiZhhkmusxRSxmiey0ilgqpMJ8Bj683kwI9Qa71ZwzHCVGfGsQ4Kk1lHRudKGwapY4hJFVjf5gR13LIs30uujWVYkdO_1Wdor8zuuKjIOWoVHzu4sCChyC792_EFLZmvhQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD3pCBeO3PXi0sH7NzpshElAgxIDhRrb1LSEqGBkX_3rbrsNoPHjbe1mytF36fu_r9xC6MjaYpQooyYRUxNhjSiIVZEQ7PjBNs9hNbxgMw-5EPEzltIKuN70wAOCKz6BpH10uXy_TtQ2VtSQLQiXUFtqWQghZdGttIioGnHDqwYmVufFtwmiTU2B2HovLfYachBGNyjYvR81asj95WfkEKA2iVvt59FQQW_rv_xjE4uxQp4YG5QqK8pOX5jpPmunnL3LH_y5xDzW-O_7waGPL9lEFFgeo5iEq9hfAyqjKKRClro54783cSUPIb_EdfrWF5WRlDh6wnbLt8hRGwnP7Erb1qNZuNtCkcz9ud4kfxUDmBl_kxKACpqUCyVkaC8tJA5YbTBpoHtxkEctYyHUSQ8wYTdMwULGkKtERcGH8mRT4Iaoulgs4QpjqJLO8gzJLjCujU6UzBrHliIkVGO_mGNXttszeC7aNmd-Rk7_Vl2inOx70Z_3e8PEU7Ra5HhsjOUPV_GMN5wYy5MmF-1O-AJnpstI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=ImageNet%3A+A+large-scale+hierarchical+image+database&rft.au=Jia+Deng&rft.au=Wei+Dong&rft.au=Socher%2C+Richard&rft.au=Li-Jia+Li&rft.date=2009-06-01&rft.pub=IEEE&rft.isbn=9781424439928&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=248&rft.epage=255&rft_id=info:doi/10.1109%2FCVPR.2009.5206848&rft.externalDocID=5206848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon