Compressed Sensing Image Reconstruction Via Recursive Spatially Adaptive Filtering

We introduce a new approach to image reconstruction from highly incomplete data. The available data are assumed to be a small collection of spectral coefficients of an arbitrary linear transform. This reconstruction problem is the subject of intensive study in the recent field of "compressed se...

Full description

Saved in:
Bibliographic Details
Published in2007 IEEE International Conference on Image Processing Vol. 1; pp. I - 549 - I - 552
Main Authors Egiazarian, K., Foi, A., Katkovnik, V.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2007
Subjects
Online AccessGet full text
ISBN9781424414369
1424414369
ISSN1522-4880
DOI10.1109/ICIP.2007.4379013

Cover

Abstract We introduce a new approach to image reconstruction from highly incomplete data. The available data are assumed to be a small collection of spectral coefficients of an arbitrary linear transform. This reconstruction problem is the subject of intensive study in the recent field of "compressed sensing" (also known as "compressive sampling"). Our approach is based on a quite specific recursive filtering procedure. At every iteration the algorithm is excited by injection of random noise in the unobserved portion of the spectrum and a spatially adaptive image denoising filter, working in the image domain, is exploited to attenuate the noise and reveal new features and details out of the incomplete and degraded observations. This recursive algorithm can be interpreted as a special type of the Robbins-Monro stochastic approximation procedure with regularization enabled by a spatially adaptive filter. Overall, we replace the conventional parametric modeling used in CS by a nonparametric one. We illustrate the effectiveness of the proposed approach for two important inverse problems from computerized tomography: Radon inversion from sparse projections and limited-angle tomography. In particular we show that the algorithm allows to achieve exact reconstruction of synthetic phantom data even from a very small number projections. The accuracy of our reconstruction is in line with the best results in the compressed sensing field.
AbstractList We introduce a new approach to image reconstruction from highly incomplete data. The available data are assumed to be a small collection of spectral coefficients of an arbitrary linear transform. This reconstruction problem is the subject of intensive study in the recent field of "compressed sensing" (also known as "compressive sampling"). Our approach is based on a quite specific recursive filtering procedure. At every iteration the algorithm is excited by injection of random noise in the unobserved portion of the spectrum and a spatially adaptive image denoising filter, working in the image domain, is exploited to attenuate the noise and reveal new features and details out of the incomplete and degraded observations. This recursive algorithm can be interpreted as a special type of the Robbins-Monro stochastic approximation procedure with regularization enabled by a spatially adaptive filter. Overall, we replace the conventional parametric modeling used in CS by a nonparametric one. We illustrate the effectiveness of the proposed approach for two important inverse problems from computerized tomography: Radon inversion from sparse projections and limited-angle tomography. In particular we show that the algorithm allows to achieve exact reconstruction of synthetic phantom data even from a very small number projections. The accuracy of our reconstruction is in line with the best results in the compressed sensing field.
Author Egiazarian, K.
Katkovnik, V.
Foi, A.
Author_xml – sequence: 1
  givenname: K.
  surname: Egiazarian
  fullname: Egiazarian, K.
  organization: Tampere Univ. of Technol., Tampere
– sequence: 2
  givenname: A.
  surname: Foi
  fullname: Foi, A.
  organization: Tampere Univ. of Technol., Tampere
– sequence: 3
  givenname: V.
  surname: Katkovnik
  fullname: Katkovnik, V.
  organization: Tampere Univ. of Technol., Tampere
BookMark eNpVkN1Kw0AQhVesYK15APEmL5A4s9lNspclWA0UlFa9LZvdaVnJH9lU6NubYm-8OpzvcAbm3LFZ27XE2ANCjAjqqSzK95gDZLFIMgWYXLFAZTkKLgROKL3-51M1Y3OUnEciz-GWBd5_AwBm6ZTCnG2KrukH8p5suKXWu_YQlo0-ULgh07V-HI5mdF0bfjl9RsfBux8Kt70ena7rU7i0uh_PaOXqkYapf89u9rr2FFx0wT5Xzx_Fa7R-eymL5TpymMkxQtxjUlUKKy2VzSxoRTaZfqpspTUBWuRQERdGggBjAARp5EZZK00qZbJgj393HRHt-sE1ejjtLqskv5p3ViQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2007.4379013
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781424414376
1424414377
EndPage I - 552
ExternalDocumentID 4379013
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-11f13bb91ba59d7d0a9ed3379bdbaae01d120be24c5040cc004ea12c9dd5c6553
IEDL.DBID RIE
ISBN 9781424414369
1424414369
ISSN 1522-4880
IngestDate Wed Aug 27 02:12:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-11f13bb91ba59d7d0a9ed3379bdbaae01d120be24c5040cc004ea12c9dd5c6553
ParticipantIDs ieee_primary_4379013
PublicationCentury 2000
PublicationDate 2007-Sept.
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-Sept.
PublicationDecade 2000
PublicationTitle 2007 IEEE International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001764140
ssj0020131
ssib030088828
ssib051315407
Score 2.0180237
Snippet We introduce a new approach to image reconstruction from highly incomplete data. The available data are assumed to be a small collection of spectral...
SourceID ieee
SourceType Publisher
StartPage I - 549
SubjectTerms Adaptive filters
Approximation algorithms
Compressed sensing
Degradation
Filtering
Image coding
Image denoising
Image reconstruction
Image sampling
inverse problems
limited-angle tomography
Radon transform
sparsity
Stochastic resonance
Title Compressed Sensing Image Reconstruction Via Recursive Spatially Adaptive Filtering
URI https://ieeexplore.ieee.org/document/4379013
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXg07W42m2SPUiytUClipbeyr0hR24KtoL_emTxaFQ_ekoHAzjKZ93xDyGUohFZG6UBkPgsikcWBYjYLbMpCZ4TiNgfTGd7F_XF0O5GTGrnazMJ47_PmM9_Gx7yW7xZ2jamyDmLnMVxRu5MkqpjVqmRHgC1Lv1WAJBccseW2-ZYkjjjimpTBGOLM5FiqEIyhEFdDX-A_xKrCgqrey3IoZ6oz6A5GBfJheZofa1lyq9RrkGHFT9GM8txer0zbfv6Cevwvw3uktZ3_o6ONZdsnNT8_II3SYaWlOnhrknvUJjn6OFCxE37-RAevoKEoRrVbbFr6ONNIwszEu6e4BhnE_uWDXju9RH1LezOs2sP3LTLu3Tx0-0G5pCGYgeexCjjPuDBGcaOlcoljWnkn4NzGGa09446HzPgwshL0hbXwU3rNQ6uckzaWUhyS-nwx90eEamkd9-BQZU5ESQKqRGsuohR8HJHGCTsmTbyi6bLA4ZiWt3PyN_mU7BZ5WOwHOyN1YNmfgwOxMhe55HwBSEa6uA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4YPOgJFYxv9-DRQrfbbdmjIRJQIMSA4Ub2VUNUIBFM9Nc70weo8eCtnaTJzmY67_mGkKuAcyW1VB5PXOKFPIk86ZvEMw0_sJpLZlIwnV4_ao_Cu7EYb5Hr9SyMcy5tPnM1fExr-XZuVpgqqyN2no8rarcFRBVxNq1VSA8Ha9b4VgMSjDNEl9tkXOIoZIhskodjiDSToqlCOIZiXIx9gQcRyQINqnjPC6LMl_VOszPIsA_z8_xYzJLapVaZ9AqOsnaU59pqqWvm8xfY439Z3iPVzQQgHaxt2z7ZcrMDUs5dVporhLcKeUB9kuKPAxV74WdPtPMKOopiXLtBp6WPU4UkzE28O4qLkEHwXz7ojVUL1Li0NcW6PXxfJaPW7bDZ9vI1Dd4UfI-lx1jCuNaSaSWkja2vpLMczq2tVsr5zLLA1y4IjQCNYQz8lk6xwEhrhYmE4IekNJvP3BGhShjLHLhUieVhHIMyUYrxsAFeDm9EsX9MKnhFk0WGxDHJb-fkb_Il2WkPe91Jt9O_PyW7WVYWu8POSAnYd-fgTiz1RSpFX1Dovgk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+International+Conference+on+Image+Processing&rft.atitle=Compressed+Sensing+Image+Reconstruction+Via+Recursive+Spatially+Adaptive+Filtering&rft.au=Egiazarian%2C+K.&rft.au=Foi%2C+A.&rft.au=Katkovnik%2C+V.&rft.date=2007-09-01&rft.pub=IEEE&rft.isbn=9781424414369&rft.issn=1522-4880&rft.volume=1&rft.spage=I+-+549&rft.epage=I+-+552&rft_id=info:doi/10.1109%2FICIP.2007.4379013&rft.externalDocID=4379013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon