Compressed Sensing Image Reconstruction Via Recursive Spatially Adaptive Filtering
We introduce a new approach to image reconstruction from highly incomplete data. The available data are assumed to be a small collection of spectral coefficients of an arbitrary linear transform. This reconstruction problem is the subject of intensive study in the recent field of "compressed se...
Saved in:
Published in | 2007 IEEE International Conference on Image Processing Vol. 1; pp. I - 549 - I - 552 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2007
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424414369 1424414369 |
ISSN | 1522-4880 |
DOI | 10.1109/ICIP.2007.4379013 |
Cover
Abstract | We introduce a new approach to image reconstruction from highly incomplete data. The available data are assumed to be a small collection of spectral coefficients of an arbitrary linear transform. This reconstruction problem is the subject of intensive study in the recent field of "compressed sensing" (also known as "compressive sampling"). Our approach is based on a quite specific recursive filtering procedure. At every iteration the algorithm is excited by injection of random noise in the unobserved portion of the spectrum and a spatially adaptive image denoising filter, working in the image domain, is exploited to attenuate the noise and reveal new features and details out of the incomplete and degraded observations. This recursive algorithm can be interpreted as a special type of the Robbins-Monro stochastic approximation procedure with regularization enabled by a spatially adaptive filter. Overall, we replace the conventional parametric modeling used in CS by a nonparametric one. We illustrate the effectiveness of the proposed approach for two important inverse problems from computerized tomography: Radon inversion from sparse projections and limited-angle tomography. In particular we show that the algorithm allows to achieve exact reconstruction of synthetic phantom data even from a very small number projections. The accuracy of our reconstruction is in line with the best results in the compressed sensing field. |
---|---|
AbstractList | We introduce a new approach to image reconstruction from highly incomplete data. The available data are assumed to be a small collection of spectral coefficients of an arbitrary linear transform. This reconstruction problem is the subject of intensive study in the recent field of "compressed sensing" (also known as "compressive sampling"). Our approach is based on a quite specific recursive filtering procedure. At every iteration the algorithm is excited by injection of random noise in the unobserved portion of the spectrum and a spatially adaptive image denoising filter, working in the image domain, is exploited to attenuate the noise and reveal new features and details out of the incomplete and degraded observations. This recursive algorithm can be interpreted as a special type of the Robbins-Monro stochastic approximation procedure with regularization enabled by a spatially adaptive filter. Overall, we replace the conventional parametric modeling used in CS by a nonparametric one. We illustrate the effectiveness of the proposed approach for two important inverse problems from computerized tomography: Radon inversion from sparse projections and limited-angle tomography. In particular we show that the algorithm allows to achieve exact reconstruction of synthetic phantom data even from a very small number projections. The accuracy of our reconstruction is in line with the best results in the compressed sensing field. |
Author | Egiazarian, K. Katkovnik, V. Foi, A. |
Author_xml | – sequence: 1 givenname: K. surname: Egiazarian fullname: Egiazarian, K. organization: Tampere Univ. of Technol., Tampere – sequence: 2 givenname: A. surname: Foi fullname: Foi, A. organization: Tampere Univ. of Technol., Tampere – sequence: 3 givenname: V. surname: Katkovnik fullname: Katkovnik, V. organization: Tampere Univ. of Technol., Tampere |
BookMark | eNpVkN1Kw0AQhVesYK15APEmL5A4s9lNspclWA0UlFa9LZvdaVnJH9lU6NubYm-8OpzvcAbm3LFZ27XE2ANCjAjqqSzK95gDZLFIMgWYXLFAZTkKLgROKL3-51M1Y3OUnEciz-GWBd5_AwBm6ZTCnG2KrukH8p5suKXWu_YQlo0-ULgh07V-HI5mdF0bfjl9RsfBux8Kt70ena7rU7i0uh_PaOXqkYapf89u9rr2FFx0wT5Xzx_Fa7R-eymL5TpymMkxQtxjUlUKKy2VzSxoRTaZfqpspTUBWuRQERdGggBjAARp5EZZK00qZbJgj393HRHt-sE1ejjtLqskv5p3ViQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICIP.2007.4379013 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781424414376 1424414377 |
EndPage | I - 552 |
ExternalDocumentID | 4379013 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-11f13bb91ba59d7d0a9ed3379bdbaae01d120be24c5040cc004ea12c9dd5c6553 |
IEDL.DBID | RIE |
ISBN | 9781424414369 1424414369 |
ISSN | 1522-4880 |
IngestDate | Wed Aug 27 02:12:00 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-11f13bb91ba59d7d0a9ed3379bdbaae01d120be24c5040cc004ea12c9dd5c6553 |
ParticipantIDs | ieee_primary_4379013 |
PublicationCentury | 2000 |
PublicationDate | 2007-Sept. |
PublicationDateYYYYMMDD | 2007-09-01 |
PublicationDate_xml | – month: 09 year: 2007 text: 2007-Sept. |
PublicationDecade | 2000 |
PublicationTitle | 2007 IEEE International Conference on Image Processing |
PublicationTitleAbbrev | ICIP |
PublicationYear | 2007 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001764140 ssj0020131 ssib030088828 ssib051315407 |
Score | 2.0180237 |
Snippet | We introduce a new approach to image reconstruction from highly incomplete data. The available data are assumed to be a small collection of spectral... |
SourceID | ieee |
SourceType | Publisher |
StartPage | I - 549 |
SubjectTerms | Adaptive filters Approximation algorithms Compressed sensing Degradation Filtering Image coding Image denoising Image reconstruction Image sampling inverse problems limited-angle tomography Radon transform sparsity Stochastic resonance |
Title | Compressed Sensing Image Reconstruction Via Recursive Spatially Adaptive Filtering |
URI | https://ieeexplore.ieee.org/document/4379013 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXg07W42m2SPUiytUClipbeyr0hR24KtoL_emTxaFQ_ekoHAzjKZ93xDyGUohFZG6UBkPgsikcWBYjYLbMpCZ4TiNgfTGd7F_XF0O5GTGrnazMJ47_PmM9_Gx7yW7xZ2jamyDmLnMVxRu5MkqpjVqmRHgC1Lv1WAJBccseW2-ZYkjjjimpTBGOLM5FiqEIyhEFdDX-A_xKrCgqrey3IoZ6oz6A5GBfJheZofa1lyq9RrkGHFT9GM8txer0zbfv6Cevwvw3uktZ3_o6ONZdsnNT8_II3SYaWlOnhrknvUJjn6OFCxE37-RAevoKEoRrVbbFr6ONNIwszEu6e4BhnE_uWDXju9RH1LezOs2sP3LTLu3Tx0-0G5pCGYgeexCjjPuDBGcaOlcoljWnkn4NzGGa09446HzPgwshL0hbXwU3rNQ6uckzaWUhyS-nwx90eEamkd9-BQZU5ESQKqRGsuohR8HJHGCTsmTbyi6bLA4ZiWt3PyN_mU7BZ5WOwHOyN1YNmfgwOxMhe55HwBSEa6uA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4YPOgJFYxv9-DRQrfbbdmjIRJQIMSA4Ub2VUNUIBFM9Nc70weo8eCtnaTJzmY67_mGkKuAcyW1VB5PXOKFPIk86ZvEMw0_sJpLZlIwnV4_ao_Cu7EYb5Hr9SyMcy5tPnM1fExr-XZuVpgqqyN2no8rarcFRBVxNq1VSA8Ha9b4VgMSjDNEl9tkXOIoZIhskodjiDSToqlCOIZiXIx9gQcRyQINqnjPC6LMl_VOszPIsA_z8_xYzJLapVaZ9AqOsnaU59pqqWvm8xfY439Z3iPVzQQgHaxt2z7ZcrMDUs5dVporhLcKeUB9kuKPAxV74WdPtPMKOopiXLtBp6WPU4UkzE28O4qLkEHwXz7ojVUL1Li0NcW6PXxfJaPW7bDZ9vI1Dd4UfI-lx1jCuNaSaSWkja2vpLMczq2tVsr5zLLA1y4IjQCNYQz8lk6xwEhrhYmE4IekNJvP3BGhShjLHLhUieVhHIMyUYrxsAFeDm9EsX9MKnhFk0WGxDHJb-fkb_Il2WkPe91Jt9O_PyW7WVYWu8POSAnYd-fgTiz1RSpFX1Dovgk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+IEEE+International+Conference+on+Image+Processing&rft.atitle=Compressed+Sensing+Image+Reconstruction+Via+Recursive+Spatially+Adaptive+Filtering&rft.au=Egiazarian%2C+K.&rft.au=Foi%2C+A.&rft.au=Katkovnik%2C+V.&rft.date=2007-09-01&rft.pub=IEEE&rft.isbn=9781424414369&rft.issn=1522-4880&rft.volume=1&rft.spage=I+-+549&rft.epage=I+-+552&rft_id=info:doi/10.1109%2FICIP.2007.4379013&rft.externalDocID=4379013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon |