Distributed compressed video sensing

This paper proposes a novel framework called distributed compressed video sensing (DISCOS) - a solution for distributed video coding (DVC) based on the recently emerging compressed sensing theory. The DISCOS framework compressively samples each video frame independently at the encoder. However, it r...

Full description

Saved in:
Bibliographic Details
Published in2009 16th IEEE International Conference on Image Processing (ICIP) pp. 1393 - 1396
Main Authors Do, T.T., Yi Chen, Nguyen, D.T., Nguyen, N., Lu Gan, Tran, T.D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2009
Subjects
Online AccessGet full text
ISBN9781424456536
1424456533
ISSN1522-4880
DOI10.1109/ICIP.2009.5414631

Cover

Abstract This paper proposes a novel framework called distributed compressed video sensing (DISCOS) - a solution for distributed video coding (DVC) based on the recently emerging compressed sensing theory. The DISCOS framework compressively samples each video frame independently at the encoder. However, it recovers video frames jointly at the decoder by exploiting an interframe sparsity model and by performing sparse recovery with side information. In particular, along with global frame-based measurements, the DISCOS encoder also acquires local block-based measurements for block prediction at the decoder. Our interframe sparsity model mimics state-of-the-art video codecs: the sparsest representation of a block is a linear combination of a few temporal neighboring blocks that are in previously reconstructed frames or in nearby key frames. This model enables a block to be optimally predicted from its local measurements by l 1 -minimization. The DISCOS decoder also employs a sparse recovery with side information to jointly reconstruct a frame from its global measurements and its local block-based prediction. Simulation results show that the proposed framework outperforms the baseline compressed sensing-based scheme of intraframe-coding and intraframe-decoding by 8 - 10dB. Finally, unlike conventional DVC schemes, our DISCOS framework can perform most encoding operations in the analog domain with very low-complexity, making it be a promising candidate for real-time, practical applications where the analog to digital conversion is expensive, e.g., in Terahertz imaging.
AbstractList This paper proposes a novel framework called distributed compressed video sensing (DISCOS) - a solution for distributed video coding (DVC) based on the recently emerging compressed sensing theory. The DISCOS framework compressively samples each video frame independently at the encoder. However, it recovers video frames jointly at the decoder by exploiting an interframe sparsity model and by performing sparse recovery with side information. In particular, along with global frame-based measurements, the DISCOS encoder also acquires local block-based measurements for block prediction at the decoder. Our interframe sparsity model mimics state-of-the-art video codecs: the sparsest representation of a block is a linear combination of a few temporal neighboring blocks that are in previously reconstructed frames or in nearby key frames. This model enables a block to be optimally predicted from its local measurements by l 1 -minimization. The DISCOS decoder also employs a sparse recovery with side information to jointly reconstruct a frame from its global measurements and its local block-based prediction. Simulation results show that the proposed framework outperforms the baseline compressed sensing-based scheme of intraframe-coding and intraframe-decoding by 8 - 10dB. Finally, unlike conventional DVC schemes, our DISCOS framework can perform most encoding operations in the analog domain with very low-complexity, making it be a promising candidate for real-time, practical applications where the analog to digital conversion is expensive, e.g., in Terahertz imaging.
Author Do, T.T.
Tran, T.D.
Nguyen, N.
Yi Chen
Lu Gan
Nguyen, D.T.
Author_xml – sequence: 1
  givenname: T.T.
  surname: Do
  fullname: Do, T.T.
  organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 2
  surname: Yi Chen
  fullname: Yi Chen
  organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 3
  givenname: D.T.
  surname: Nguyen
  fullname: Nguyen, D.T.
  organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 4
  givenname: N.
  surname: Nguyen
  fullname: Nguyen, N.
  organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 5
  surname: Lu Gan
  fullname: Lu Gan
  organization: Sch. of Eng. & Design, Brunel Univ., Uxbridge, UK
– sequence: 6
  givenname: T.D.
  surname: Tran
  fullname: Tran, T.D.
  organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
BookMark eNpVjz1PwzAURY0oEm3pD0AsHVgT3rOfHXtE4StSpXaAubLjV2REkyoOSPx7KtGF6d6zXJ07E5Ou71iIa4QSEdxdUzebUgK4UhOSUXgmFq6ySJJIG63h_B8rMxFT1FIWZC1cilnOHwASUOFU3D6kPA4pfI0cl22_Pwyc87F-p8j9MnOXU_d-JS52_jPz4pRz8fb0-Fq_FKv1c1Pfr4qElR6Lo5sjqSJZ9nZnjSHUrbPRuBCMtNpixRB8641DH5CqyDFQaCNBNIhKzcXN325i5u1hSHs__GxPJ9UvedtDrw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP.2009.5414631
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781424456550
9781424456543
142445655X
1424456541
EndPage 1396
ExternalDocumentID 5414631
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-1099423d48ea8f866415c98d69bb6285817e0baca691ab147dedb4bcd40d61133
IEDL.DBID RIE
ISBN 9781424456536
1424456533
ISSN 1522-4880
IngestDate Wed Aug 27 02:55:56 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-1099423d48ea8f866415c98d69bb6285817e0baca691ab147dedb4bcd40d61133
PageCount 4
ParticipantIDs ieee_primary_5414631
PublicationCentury 2000
PublicationDate 2009-Nov.
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-Nov.
PublicationDecade 2000
PublicationTitle 2009 16th IEEE International Conference on Image Processing (ICIP)
PublicationTitleAbbrev ICIP
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
ssj0000453011
Score 2.2119138
Snippet This paper proposes a novel framework called distributed compressed video sensing (DISCOS) - a solution for distributed video coding (DVC) based on the...
SourceID ieee
SourceType Publisher
StartPage 1393
SubjectTerms Analog-digital conversion
Compressed sensing
compressive sensing
Decoding
distributed video coding
Encoding
Image reconstruction
Particle measurements
Predictive models
sparse recovery with decoder side information
structurally random matrices
Video codecs
Video coding
Video compression
Wyner-Ziv coding
Title Distributed compressed video sensing
URI https://ieeexplore.ieee.org/document/5414631
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gJ0-oYHynB44Wuu2y255RAiYYDpJwI_uYGmNSjJaLv96d7YLRePDWbpp0J93mm9f3DUA_kyplJeU1rM5irhMdawfcsUklcsktpn4ky_xRTJf8YTVateB2z4VBRN98hgO69LV8uzFbSpUNaWS1INL0gZRFw9Xa51Oca9Kc1RBskY6M10p1wRYd0h2pyzkwWbbTegr3IpQ7WVIMZ-PZopGxDG_7MXbFo86kA_Pdfptmk9fBttYD8_lLyvG_Bh1B75vfFy32yHUMLaxOoBMc0ij87h9d6N-RrC5NxHLL1HzulcZtRNy9TfRBve_Vcw-Wk_un8TQOYxXiF-cr1DHVwpwTZXmOKi9zIRyGmyK3otCaCJU5k5hoZZQomNKMS4tWc20sT6xgLqY9hXa1qfAMIrfNUTpCwwxXXLqHWFrqorSpRi5KlZ1Dl4xevzXKGetg78Xfy5dw6Gs1nul3Be36fYvXDvJrfeO_9RcgNaLS
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPOgJFYxve-Boodtut-0ZJaBAOEDCjeyrxpi0RsrFX-_OdsFoPHhrN026k24z3zy-bwC6UcJDkmNeQ4nIpyIQvjCO25dhomlClQ7tSJbpjI2W9GkVrxpwv-fCaK1t85nu4aWt5atSbjFV1seR1QxJ0wexiSqSmq21z6gYcFKfVhduoZKMVUs14RYe0x2ty0CYKNqpPbl75gqeJMj648F4XgtZuvf9GLxi_c6wBdPdjut2k7fethI9-flLzPG_Jh1D55vh5833vusEGro4hZaDpJ774Tdt6D6gsC7OxDLL2H5utcaVh-y90ttg93vx0oHl8HExGPlusIL_atBC5WM1zMAoRVPN0zxlzHhxmaWKZUIgpTIliQ4El5xlhAtCE6WVoEIqGihGTFR7Bs2iLPQ5eGabcRhrSSTlNDEPkTAXWa5CoSnLeXQBbTR6_V5rZ6ydvZd_L9_B4Wgxnawn49nzFRzZyo3l_V1Ds_rY6hsDACpxa7_7F-nZpiM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+16th+IEEE+International+Conference+on+Image+Processing+%28ICIP%29&rft.atitle=Distributed+compressed+video+sensing&rft.au=Do%2C+T.T.&rft.au=Yi+Chen&rft.au=Nguyen%2C+D.T.&rft.au=Nguyen%2C+N.&rft.date=2009-11-01&rft.pub=IEEE&rft.isbn=9781424456536&rft.issn=1522-4880&rft.spage=1393&rft.epage=1396&rft_id=info:doi/10.1109%2FICIP.2009.5414631&rft.externalDocID=5414631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-4880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-4880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-4880&client=summon