Keyword proximity search on XML graphs
XKeyword provides efficient keyword proximity queries on large XML graph databases. A query is simply a list of keywords and does not require any schema or query language knowledge for its formulation. XKeyword is built on a relational database and, hence, can accommodate very large graphs. Query ev...
Saved in:
| Published in | 2003 19th International Conference on Data Engineering pp. 367 - 378 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
2003
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9780780376656 078037665X |
| DOI | 10.1109/ICDE.2003.1260806 |
Cover
| Abstract | XKeyword provides efficient keyword proximity queries on large XML graph databases. A query is simply a list of keywords and does not require any schema or query language knowledge for its formulation. XKeyword is built on a relational database and, hence, can accommodate very large graphs. Query evaluation is optimized by using the graph's schema. In particular, XKeyword consists of two stages. In the preprocessing stage a set of keyword indices are built along with indexed path relations that describe particular patterns of paths in the graph. In the query processing stage plans are developed that use a near optimal set of path relations to efficiently locate the keyword query results. The results are presented graphically using the novel idea of interactive result graphs, which are populated on-demand according to the user's navigation and allow efficient information discovery. We provide theoretical and experimental points for the selection of the appropriate set of precomputed path relations. We also propose and experimentally evaluate algorithms to minimize the number of queries sent to the database to output the top-K results. |
|---|---|
| AbstractList | XKeyword provides efficient keyword proximity queries on large XML graph databases. A query is simply a list of keywords and does not require any schema or query language knowledge for its formulation. XKeyword is built on a relational database and, hence, can accommodate very large graphs. Query evaluation is optimized by using the graph's schema. In particular, XKeyword consists of two stages. In the preprocessing stage a set of keyword indices are built along with indexed path relations that describe particular patterns of paths in the graph. In the query processing stage plans are developed that use a near optimal set of path relations to efficiently locate the keyword query results. The results are presented graphically using the novel idea of interactive result graphs, which are populated on-demand according to the user's navigation and allow efficient information discovery. We provide theoretical and experimental points for the selection of the appropriate set of precomputed path relations. We also propose and experimentally evaluate algorithms to minimize the number of queries sent to the database to output the top-K results. |
| Author | Balmin, A. Hristidis, V. Papakonstantinou, Y. |
| Author_xml | – sequence: 1 givenname: V. surname: Hristidis fullname: Hristidis, V. organization: Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA – sequence: 2 givenname: Y. surname: Papakonstantinou fullname: Papakonstantinou, Y. organization: Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA – sequence: 3 givenname: A. surname: Balmin fullname: Balmin, A. organization: Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA |
| BookMark | eNotj09LwzAchgM6UGc_gHjJyVvrL_-To9RNxzq8bLDbSJfERVxbkoH22ztwLw88twfeO3Td9Z1H6IFARQiY50X9OqsoAKsIlaBBXqHCKA1nmJJSyBtU5PwF53HBjOa36Gnpx58-OTyk_jce42nE2du0P-C-w9tVgz-THQ75Hk2C_c6-uHiKNvPZun4vm4-3Rf3SlJEodioFtFJyEVhLqTSCGgdgdSs0aZnlSlKnFCcGjCIWqNprpwPhFoLwzDoe2BQ9_nej9343pHi0adxd3rA_c60_Dw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICDE.2003.1260806 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 378 |
| ExternalDocumentID | 1260806 |
| GroupedDBID | 6IE 6IH 6IK 6IL AAJGR AAVQY AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIB RIC RIE RIL RIO |
| ID | FETCH-LOGICAL-i173t-50b6645f3b2269529d00a8b581b3a4762d774190971a027c8d8f14a0f5e3ad4f3 |
| IEDL.DBID | RIE |
| ISBN | 9780780376656 078037665X |
| IngestDate | Tue Aug 26 17:53:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i173t-50b6645f3b2269529d00a8b581b3a4762d774190971a027c8d8f14a0f5e3ad4f3 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_1260806 |
| PublicationCentury | 2000 |
| PublicationDate | 20030000 |
| PublicationDateYYYYMMDD | 2003-01-01 |
| PublicationDate_xml | – year: 2003 text: 20030000 |
| PublicationDecade | 2000 |
| PublicationTitle | 2003 19th International Conference on Data Engineering |
| PublicationTitleAbbrev | ICDE |
| PublicationYear | 2003 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000453984 |
| Score | 1.9483668 |
| Snippet | XKeyword provides efficient keyword proximity queries on large XML graph databases. A query is simply a list of keywords and does not require any schema or... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 367 |
| SubjectTerms | Database languages Keyword search Query processing Relational databases Search engines Tree graphs XML |
| Title | Keyword proximity search on XML graphs |
| URI | https://ieeexplore.ieee.org/document/1260806 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyZALeItD4wktetH7Lm0KogiBiplq-zElhBSiiAVgl_P2UmKQAxsjofEln25717fIXRpQ8DQcgkinpmE-8Imqsh84rinSnPCTexasriX8yW_zUXeQ1fbWhjnXEw-c2kYxlh-uS42wVU2ogC-VeDX3smUbGq1tv4UgCZMKx4tc0VAbKToCHa6Z9lGNSnRo5vJ9TSygabtS390V4nKZbaHFt2ympyS53RT27T4_MXY-N9176PhdxkfftgqqAPUc9UABYfXO1icOHwsVDd94Oa243WF88UdjhTWb0O0nE0fJ_OkbZaQPNGM1YkgVkouPLMAqLQY65IQo6wAWMoMh19eCUAPtL_OqAFTtFCl8pQb4oVjpuSeHaJ-ta7cEcKiBKlnAFQ89YGA3ko71lwaY5X01ttjNAh7XL00fBirdnsnf0-fot2YABfdFmeoX79u3Dko8tpexBP8ArzOlrY |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCfLPOhJzWb8loNH29HxoHCeM5uui4ct2W2BFhJj0hntYvSvF2g3o_HgjXJoIfD6fu_r9xC61j5gqIE7EU9VBDbXkchTGxmwiZBAQIWuJdmUj-Zwv2CLFrrZ1sIYY0LymYn9MMTyi1W-9q6yXuLAt_D82jsMAFhdrbX1qDhwQqWAYJsL4gSHsw3FzuaZN3HNhMjeeHA7DHygcfPaH_1Vgnq520fZZmF1VslzvK50nH_-4mz878oPUPe7kA8_blXUIWqZsoO8y-vd2ZzYf8zXN33g-r7jVYkX2QQHEuu3LprfDWeDUdS0S4iekpRWESOac2CWagepJOvLghAlNHPAlCpwP73CQT2n_2WaKGeM5qIQNgFFLDNUFWDpEWqXq9IcI8wKJ_fUQRWbWE9Br7nuS-BKacGttvoEdfwely81I8ay2d7p39NXaHc0yybLyXj6cIb2QjpccGKco3b1ujYXTq1X-jKc5hfdSZoD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2003+19th+International+Conference+on+Data+Engineering&rft.atitle=Keyword+proximity+search+on+XML+graphs&rft.au=Hristidis%2C+V.&rft.au=Papakonstantinou%2C+Y.&rft.au=Balmin%2C+A.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780376656&rft.spage=367&rft.epage=378&rft_id=info:doi/10.1109%2FICDE.2003.1260806&rft.externalDocID=1260806 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780376656/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780376656/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780376656/sc.gif&client=summon&freeimage=true |