Keyword proximity search on XML graphs

XKeyword provides efficient keyword proximity queries on large XML graph databases. A query is simply a list of keywords and does not require any schema or query language knowledge for its formulation. XKeyword is built on a relational database and, hence, can accommodate very large graphs. Query ev...

Full description

Saved in:
Bibliographic Details
Published in2003 19th International Conference on Data Engineering pp. 367 - 378
Main Authors Hristidis, V., Papakonstantinou, Y., Balmin, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2003
Subjects
Online AccessGet full text
ISBN9780780376656
078037665X
DOI10.1109/ICDE.2003.1260806

Cover

Abstract XKeyword provides efficient keyword proximity queries on large XML graph databases. A query is simply a list of keywords and does not require any schema or query language knowledge for its formulation. XKeyword is built on a relational database and, hence, can accommodate very large graphs. Query evaluation is optimized by using the graph's schema. In particular, XKeyword consists of two stages. In the preprocessing stage a set of keyword indices are built along with indexed path relations that describe particular patterns of paths in the graph. In the query processing stage plans are developed that use a near optimal set of path relations to efficiently locate the keyword query results. The results are presented graphically using the novel idea of interactive result graphs, which are populated on-demand according to the user's navigation and allow efficient information discovery. We provide theoretical and experimental points for the selection of the appropriate set of precomputed path relations. We also propose and experimentally evaluate algorithms to minimize the number of queries sent to the database to output the top-K results.
AbstractList XKeyword provides efficient keyword proximity queries on large XML graph databases. A query is simply a list of keywords and does not require any schema or query language knowledge for its formulation. XKeyword is built on a relational database and, hence, can accommodate very large graphs. Query evaluation is optimized by using the graph's schema. In particular, XKeyword consists of two stages. In the preprocessing stage a set of keyword indices are built along with indexed path relations that describe particular patterns of paths in the graph. In the query processing stage plans are developed that use a near optimal set of path relations to efficiently locate the keyword query results. The results are presented graphically using the novel idea of interactive result graphs, which are populated on-demand according to the user's navigation and allow efficient information discovery. We provide theoretical and experimental points for the selection of the appropriate set of precomputed path relations. We also propose and experimentally evaluate algorithms to minimize the number of queries sent to the database to output the top-K results.
Author Balmin, A.
Hristidis, V.
Papakonstantinou, Y.
Author_xml – sequence: 1
  givenname: V.
  surname: Hristidis
  fullname: Hristidis, V.
  organization: Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: Y.
  surname: Papakonstantinou
  fullname: Papakonstantinou, Y.
  organization: Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: A.
  surname: Balmin
  fullname: Balmin, A.
  organization: Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA
BookMark eNotj09LwzAchgM6UGc_gHjJyVvrL_-To9RNxzq8bLDbSJfERVxbkoH22ztwLw88twfeO3Td9Z1H6IFARQiY50X9OqsoAKsIlaBBXqHCKA1nmJJSyBtU5PwF53HBjOa36Gnpx58-OTyk_jce42nE2du0P-C-w9tVgz-THQ75Hk2C_c6-uHiKNvPZun4vm4-3Rf3SlJEodioFtFJyEVhLqTSCGgdgdSs0aZnlSlKnFCcGjCIWqNprpwPhFoLwzDoe2BQ9_nej9343pHi0adxd3rA_c60_Dw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDE.2003.1260806
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 378
ExternalDocumentID 1260806
GroupedDBID 6IE
6IH
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIB
RIC
RIE
RIL
RIO
ID FETCH-LOGICAL-i173t-50b6645f3b2269529d00a8b581b3a4762d774190971a027c8d8f14a0f5e3ad4f3
IEDL.DBID RIE
ISBN 9780780376656
078037665X
IngestDate Tue Aug 26 17:53:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i173t-50b6645f3b2269529d00a8b581b3a4762d774190971a027c8d8f14a0f5e3ad4f3
PageCount 12
ParticipantIDs ieee_primary_1260806
PublicationCentury 2000
PublicationDate 20030000
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 20030000
PublicationDecade 2000
PublicationTitle 2003 19th International Conference on Data Engineering
PublicationTitleAbbrev ICDE
PublicationYear 2003
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453984
Score 1.9483668
Snippet XKeyword provides efficient keyword proximity queries on large XML graph databases. A query is simply a list of keywords and does not require any schema or...
SourceID ieee
SourceType Publisher
StartPage 367
SubjectTerms Database languages
Keyword search
Query processing
Relational databases
Search engines
Tree graphs
XML
Title Keyword proximity search on XML graphs
URI https://ieeexplore.ieee.org/document/1260806
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyZALeItD4wktetH7Lm0KogiBiplq-zElhBSiiAVgl_P2UmKQAxsjofEln25717fIXRpQ8DQcgkinpmE-8Imqsh84rinSnPCTexasriX8yW_zUXeQ1fbWhjnXEw-c2kYxlh-uS42wVU2ogC-VeDX3smUbGq1tv4UgCZMKx4tc0VAbKToCHa6Z9lGNSnRo5vJ9TSygabtS390V4nKZbaHFt2ympyS53RT27T4_MXY-N9176PhdxkfftgqqAPUc9UABYfXO1icOHwsVDd94Oa243WF88UdjhTWb0O0nE0fJ_OkbZaQPNGM1YkgVkouPLMAqLQY65IQo6wAWMoMh19eCUAPtL_OqAFTtFCl8pQb4oVjpuSeHaJ-ta7cEcKiBKlnAFQ89YGA3ko71lwaY5X01ttjNAh7XL00fBirdnsnf0-fot2YABfdFmeoX79u3Dko8tpexBP8ArzOlrY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCfLPOhJzWb8loNH29HxoHCeM5uui4ct2W2BFhJj0hntYvSvF2g3o_HgjXJoIfD6fu_r9xC61j5gqIE7EU9VBDbXkchTGxmwiZBAQIWuJdmUj-Zwv2CLFrrZ1sIYY0LymYn9MMTyi1W-9q6yXuLAt_D82jsMAFhdrbX1qDhwQqWAYJsL4gSHsw3FzuaZN3HNhMjeeHA7DHygcfPaH_1Vgnq520fZZmF1VslzvK50nH_-4mz878oPUPe7kA8_blXUIWqZsoO8y-vd2ZzYf8zXN33g-r7jVYkX2QQHEuu3LprfDWeDUdS0S4iekpRWESOac2CWagepJOvLghAlNHPAlCpwP73CQT2n_2WaKGeM5qIQNgFFLDNUFWDpEWqXq9IcI8wKJ_fUQRWbWE9Br7nuS-BKacGttvoEdfwely81I8ay2d7p39NXaHc0yybLyXj6cIb2QjpccGKco3b1ujYXTq1X-jKc5hfdSZoD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2003+19th+International+Conference+on+Data+Engineering&rft.atitle=Keyword+proximity+search+on+XML+graphs&rft.au=Hristidis%2C+V.&rft.au=Papakonstantinou%2C+Y.&rft.au=Balmin%2C+A.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780376656&rft.spage=367&rft.epage=378&rft_id=info:doi/10.1109%2FICDE.2003.1260806&rft.externalDocID=1260806
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780376656/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780376656/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780376656/sc.gif&client=summon&freeimage=true