Stochastic partial update LMS algorithm for adaptive arrays

Partial updating of LMS filter coefficients is an effective method for reducing the computational load and the power consumption in adaptive filter implementations. Several algorithms have been proposed in the literature based on partial updating. Unfortunately, it has been observed that these algor...

Full description

Saved in:
Bibliographic Details
Published inSensor Array and Multichannel Workshop 2000 pp. 322 - 326
Main Authors Godavarti, M., Hero, A.O.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2000
Subjects
Online AccessGet full text
ISBN0780363396
9780780363397
DOI10.1109/SAM.2000.878022

Cover

Abstract Partial updating of LMS filter coefficients is an effective method for reducing the computational load and the power consumption in adaptive filter implementations. Several algorithms have been proposed in the literature based on partial updating. Unfortunately, it has been observed that these algorithms do not have good convergence properties in practice. In particular, there generally exist signals for which these algorithms stagnate or diverge. We propose a new algorithm, called the stochastic partial update LMS (SPU-LMS) algorithm which attempts to remedy some of the drawbacks of existing algorithms. The SPU-LMS algorithm differs from the existing algorithms in that the subsets to be updated are chosen in a random manner at each iteration. We derive conditions for filter stability, convergence rate, and steady state error for the proposed algorithm under an independent snapshots assumption in the context of adaptive beamforming for antenna arrays. We verify the analysis via computer simulations and illustrate the advantages of the new algorithm through examples.
AbstractList Partial updating of LMS filter coefficients is an effective method for reducing the computational load and the power consumption in adaptive filter implementations. Several algorithms have been proposed in the literature based on partial updating. Unfortunately, it has been observed that these algorithms do not have good convergence properties in practice. In particular, there generally exist signals for which these algorithms stagnate or diverge. We propose a new algorithm, called the stochastic partial update LMS (SPU-LMS) algorithm which attempts to remedy some of the drawbacks of existing algorithms. The SPU-LMS algorithm differs from the existing algorithms in that the subsets to be updated are chosen in a random manner at each iteration. We derive conditions for filter stability, convergence rate, and steady state error for the proposed algorithm under an independent snapshots assumption in the context of adaptive beamforming for antenna arrays. We verify the analysis via computer simulations and illustrate the advantages of the new algorithm through examples.
Author Godavarti, M.
Hero, A.O.
Author_xml – sequence: 1
  givenname: M.
  surname: Godavarti
  fullname: Godavarti, M.
  organization: Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
– sequence: 2
  givenname: A.O.
  surname: Hero
  fullname: Hero, A.O.
BookMark eNotj0tLw0AUhQdU0NauBVfzBxJn5mYewVUpviDFRXRdbuZhR9ImTEah_95AXZ0DH5yPsyCXx-HoCbnjrOSc1Q_telsKxlhptGFCXJAFmwsogFpdk9U0fc-QSWl0DTfksc2D3eOUo6Ujphyxpz-jw-xps20p9l9Dinl_oGFIFB2OOf56iinhabolVwH7ya_-c0k-n58-Nq9F8_7ytlk3ReRa5AKMNLPb1MLqKohOIYMqOJRVZVBw3jFVCw3WKHCgteYOQsWl62znggMBS3J_3o3e-92Y4gHTaXe-B3_6i0Ye
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SAM.2000.878022
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 326
ExternalDocumentID 878022
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i172t-3858396892c74f2b6a034fda5448a211b069273c863d37771d3f415dbcbdfd323
IEDL.DBID RIE
ISBN 0780363396
9780780363397
IngestDate Tue Aug 26 18:19:55 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i172t-3858396892c74f2b6a034fda5448a211b069273c863d37771d3f415dbcbdfd323
PageCount 5
ParticipantIDs ieee_primary_878022
PublicationCentury 2000
PublicationDate 20000000
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – year: 2000
  text: 20000000
PublicationDecade 2000
PublicationTitle Sensor Array and Multichannel Workshop 2000
PublicationTitleAbbrev SAM
PublicationYear 2000
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000558793
Score 1.4670608
Snippet Partial updating of LMS filter coefficients is an effective method for reducing the computational load and the power consumption in adaptive filter...
SourceID ieee
SourceType Publisher
StartPage 322
SubjectTerms Adaptive arrays
Adaptive filters
Array signal processing
Computer errors
Convergence
Energy consumption
Least squares approximation
Stability
Steady-state
Stochastic processes
Title Stochastic partial update LMS algorithm for adaptive arrays
URI https://ieeexplore.ieee.org/document/878022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLVoJyZeRbzlgdVpHMexIyaEqCpEEVKp1K3yK7SiNFGaDPD1-FEVgRjYkgyRHTs-597rcwzAtSREE0wLpDGWKC1IjoSgFJnUZI7QKuUV3qOnbDhJH6Z0uvHZ9loYY4zffGYid-lr-bpUrUuV9TlzwtAO6DCeBanWNp0SU8rtVPOBOXfFSRJc-xjf3rONsw-O8_74duRFKlF45Y-jVTyyDPaCZHvtDQndhpK3qG1kpD5_2TX-s9H7oPct4YPPW3A6ADtmdQRuxk2p5sJZM8PKzRmxhG3lYn74OBpDsXwt60Uzf4eWyUKhReXWQijqWnyse2AyuH-5G6LN6QloYUlJg1zFz34EnieKpUUiMxGTtNCC2oBM2LBPxlluuYvimR0txhjWpLBorqWSutAkIceguypX5gTARGETa6osd7CInguplP3XY5VoTBVP9Sk4dP2eVcEgYxa6fPbn03OwG9TsLotxAbpN3ZpLi-uNvPIj-gXInZ3L
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWgDDDxKuKNB9akSWzHjpgQoirQVEhtpW6VX4GK0kRpMsDXYztVEYiBLclgxY_knHuvzzEA1wIhhUKSeSoMhYczlHicE-JprGNLaKV0Cu90EPfG-HFCJiufbaeF0Vq7zWfat5eulq9yWdtUWYdRKwzdBFsEY0wasdY6oRIQwsxic6E5s-VJ1Pj2Uba-pytvnzBIOsPb1MlU_KbRH4erOGzp7jai7aWzJLRbSt78uhK-_Pxl2PjP194D7W8RH3xew9M-2NCLQ3AzrHL5yq05MyzsquFzWBc26of9dAj5_CUvZ9XrOzRcFnLFC_s3hLws-ceyDcbd-9Fdz1udn-DNDC2pPFvzM4PAkkhSnEUi5gHCmeJm9Bg3gZ8I4sSwF8liM1-U0lChzOC5ElKoTKEIHYHWIl_oYwAjGepAEWnYg8H0hAspzdceyEiFRDKsTsCB7fe0aCwypk2XT_98egW2e6O0P-0_DJ7OwE6jbbc5jXPQqspaXxiUr8Slm90vRHuhGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Sensor+Array+and+Multichannel+Workshop+2000&rft.atitle=Stochastic+partial+update+LMS+algorithm+for+adaptive+arrays&rft.au=Godavarti%2C+M.&rft.au=Hero%2C+A.O.&rft.date=2000-01-01&rft.pub=IEEE&rft.isbn=9780780363397&rft.spage=322&rft.epage=326&rft_id=info:doi/10.1109%2FSAM.2000.878022&rft.externalDocID=878022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780363397/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780363397/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780363397/sc.gif&client=summon&freeimage=true