Detection of Attention Deficit Hyperactivity Disorder Using EEG Signals and Douglas-Peucker Algorithm
Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagno...
        Saved in:
      
    
          | Published in | Medical Technologies National Congress (Online) pp. 1 - 4 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        31.10.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2687-7783 | 
| DOI | 10.1109/TIPTEKNO56568.2022.9960193 | 
Cover
| Abstract | Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagnosis method. Hence, the electroencephalography (EEG) signals of ADHD subjects are often investigated to understand changes in the brain. In the proposed study, it is aimed to process and reduce the EEG data of ADHD and control subjects (CS) by using the Douglas-Peucker algorithm and to investigate the effects of the algorithm on EEG signal analysis. EEG data obtained from 18 control subjects (4 boys, 14 girls, mean age 13) and 15 ADHD patients (7 boys, 8 girls, mean age 12) are collected. By using reduced EEG data; time features such as energy, skewness, kurtosis, mean absolute deviation (MAD), root mean square (RMS), peak to peak (PTP) value, Hjorth parameters, and non-linear features such as largest Lyapunov Exponent (LLE), correlation dimension (CD), Hurst exponent (HE), Katz fractal dimension (KFD), Higuchi fractal dimension (HFD), are calculated to examine different signal characteristics. Extracted features are used to distinguish the EEG data of ADHD and CS by using various machine learning algorithms. | 
    
|---|---|
| AbstractList | Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagnosis method. Hence, the electroencephalography (EEG) signals of ADHD subjects are often investigated to understand changes in the brain. In the proposed study, it is aimed to process and reduce the EEG data of ADHD and control subjects (CS) by using the Douglas-Peucker algorithm and to investigate the effects of the algorithm on EEG signal analysis. EEG data obtained from 18 control subjects (4 boys, 14 girls, mean age 13) and 15 ADHD patients (7 boys, 8 girls, mean age 12) are collected. By using reduced EEG data; time features such as energy, skewness, kurtosis, mean absolute deviation (MAD), root mean square (RMS), peak to peak (PTP) value, Hjorth parameters, and non-linear features such as largest Lyapunov Exponent (LLE), correlation dimension (CD), Hurst exponent (HE), Katz fractal dimension (KFD), Higuchi fractal dimension (HFD), are calculated to examine different signal characteristics. Extracted features are used to distinguish the EEG data of ADHD and CS by using various machine learning algorithms. | 
    
| Author | Cura, Ozlem Karabiber Celen, Sibel Aydin, Gamze N. Atli, Sibel Kocaaslan Akan, Aydin  | 
    
| Author_xml | – sequence: 1 givenname: Ozlem Karabiber surname: Cura fullname: Cura, Ozlem Karabiber email: ozlem.karabiber@ikcu.edu.tr organization: Izmir Katip Celebi University,Dept. of Biomedical Engineering,Izmir,TURKEY – sequence: 2 givenname: Gamze N. surname: Aydin fullname: Aydin, Gamze N. email: gamzeaydin.2055@gmail.com organization: Izmir Katip Celebi University,Dept. of Biomedical Engineering,Izmir,TURKEY – sequence: 3 givenname: Sibel surname: Celen fullname: Celen, Sibel organization: Izmir Katip Celebi University,Dept. of Biomedical Engineering,Izmir,TURKEY – sequence: 4 givenname: Sibel Kocaaslan surname: Atli fullname: Atli, Sibel Kocaaslan email: sibel.atli@ikcu.edu.tr organization: Izmir Katip Celebi University,Faculty of Medicine,Dept. of Biophysics,Izmir,TURKEY – sequence: 5 givenname: Aydin surname: Akan fullname: Akan, Aydin email: akan.aydin@ieu.edu.tr organization: Izmir University of Economics,Dept. of Electrical and Electronics Eng.,Izmir,TURKEY  | 
    
| BookMark | eNotkF1PwjAYhavRRER-gTeN98N-rF17SdgEIhES4ZqU9u2sQme2YsK_d1GuTk7y5MnJuUc3sYmA0BMlY0qJft4s1pvq9W0lpJBqzAhjY60loZpfoZEuFJVS5CLnjF2jAZOqyIpC8Ts06rpPQggTlDPNBwhKSGBTaCJuPJ6kBPGvlOCDDQnPz9_Qmh74CemMy9A1rYMWb7sQa1xVM_we6mgOHTbR4bI51QfTZWs42a-emhzqpg3p4_iAbn0PweiSQ7R9qTbTebZczRbTyTIL_d6U7TkjxhFLbU6kU8I6w5kEV0hBzd5J5z3lwL0le-ZUzojnhoKmUnkpfCH5ED3-ewMA7L7bcDTteXc5hv8CMXZcHw | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/TIPTEKNO56568.2022.9960193 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781665454322 1665454326  | 
    
| EISSN | 2687-7783 | 
    
| EndPage | 4 | 
    
| ExternalDocumentID | 9960193 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL  | 
    
| ID | FETCH-LOGICAL-i166t-b320ad0c1c406d85cda326ed7651abd6dff13e3fc0b2d8420f3a1e9168f65f763 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:18:26 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i166t-b320ad0c1c406d85cda326ed7651abd6dff13e3fc0b2d8420f3a1e9168f65f763 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | ieee_primary_9960193 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-Oct.-31 | 
    
| PublicationDateYYYYMMDD | 2022-10-31 | 
    
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-31 day: 31  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Medical Technologies National Congress (Online) | 
    
| PublicationTitleAbbrev | TIPTEKNO | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0002513293 | 
    
| Score | 1.8143579 | 
    
| Snippet | Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children:... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1 | 
    
| SubjectTerms | ADHD Behavioral sciences Classification algorithms Douglas-Peucker Algorithm EEG Electroencephalography Feature extraction Fractals Machine learning Machine learning algorithms Process control  | 
    
| Title | Detection of Attention Deficit Hyperactivity Disorder Using EEG Signals and Douglas-Peucker Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/9960193 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG2Qkyc1YPydHjzasZWt245EhqgBSYSEG2nXFom6GVIu_vV-7QZG48Hb0mRL0yZ7r1_fex9C1zRSlCuREuDKXRKKSBAOSEDCXCQ8igHkpfUOj8ZsOAsf5tG8gW52XhillBOfKc8-urt8WeYbWyrr2CQRIBx7aC9OWOXV2tVTAKe7AF11rmjgp53p_WSaPY6fLGWxIi5KvfoDPzqpOCAZHKDRdgqVfuTV2xjh5Z-_0hn_O8dD1P627OHJDoyOUEMVLaT6yjipVYFLjXvGVNpG3Fc2N8LgIRxCnUvKNpDA2yBO7GQEOMvu8PNqafOVMS8krqk2mSgnxcC9t2W5XpmX9zaaDbLp7ZDUfRXIKmDMENGlPpd-HuSA5jKJcsmBxCkZsyjgQjKpta2N6twXVCYh9XWXBwp4ZKJZpOGHdIyaRVmoE4ThsJL6YRBIwPlQc5ZSDYwJ3tNxJGMqT1HLLtHio4rOWNSrc_b38Dnat9tUQcMFapr1Rl0C5htx5Tb7CyZarG4 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA1zHvSksonf5uDRdm2a9OM4XGfnPhzYgbeRNMkcaisju_jXm7TdRPHgrQRaQgJ9L7-8934A3CAiEBUssjRX9izMCLOoRgILZyykJNAgz413eDzxkxl-eCbPDXC79cIIIUrxmbDNY3mXz4tsbUplHZMkognHDtglGGNSubW2FRWN1J4GrzpZ1HWiTjqYpvFw8mhIi5FxIWTXn_jRS6WEkv4BGG8mUSlIXu21Ynb2-Suf8b-zPATtb9MenG7h6Ag0RN4CoidUKbbKYSFhV6lK3Qh7wiRHKJjoY2jpkzItJOAmihOWQgIYx_fwabkwCcuQ5hzWZNuailKMAbtvi2K1VC_vbTDrx-ldYtWdFayl6_vKYh5yKHcyN9N4zkOScappnOCBT1zKuM-lNNVRmTkM8RAjR3rUFZpJhtInUv-SjkEzL3JxAqA-rkQOdl2ukR5L6kdIas6k35MB4QHip6Bllmj-UYVnzOvVOft7-BrsJel4NB8NJsNzsG-2rAKKC9BUq7W41AxAsaty478AXF-vuw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Medical+Technologies+National+Congress+%28Online%29&rft.atitle=Detection+of+Attention+Deficit+Hyperactivity+Disorder+Using+EEG+Signals+and+Douglas-Peucker+Algorithm&rft.au=Cura%2C+Ozlem+Karabiber&rft.au=Aydin%2C+Gamze+N.&rft.au=Celen%2C+Sibel&rft.au=Atli%2C+Sibel+Kocaaslan&rft.date=2022-10-31&rft.pub=IEEE&rft.eissn=2687-7783&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTIPTEKNO56568.2022.9960193&rft.externalDocID=9960193 |