Detection of Attention Deficit Hyperactivity Disorder Using EEG Signals and Douglas-Peucker Algorithm

Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagno...

Full description

Saved in:
Bibliographic Details
Published inMedical Technologies National Congress (Online) pp. 1 - 4
Main Authors Cura, Ozlem Karabiber, Aydin, Gamze N., Celen, Sibel, Atli, Sibel Kocaaslan, Akan, Aydin
Format Conference Proceeding
LanguageEnglish
Published IEEE 31.10.2022
Subjects
Online AccessGet full text
ISSN2687-7783
DOI10.1109/TIPTEKNO56568.2022.9960193

Cover

Abstract Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagnosis method. Hence, the electroencephalography (EEG) signals of ADHD subjects are often investigated to understand changes in the brain. In the proposed study, it is aimed to process and reduce the EEG data of ADHD and control subjects (CS) by using the Douglas-Peucker algorithm and to investigate the effects of the algorithm on EEG signal analysis. EEG data obtained from 18 control subjects (4 boys, 14 girls, mean age 13) and 15 ADHD patients (7 boys, 8 girls, mean age 12) are collected. By using reduced EEG data; time features such as energy, skewness, kurtosis, mean absolute deviation (MAD), root mean square (RMS), peak to peak (PTP) value, Hjorth parameters, and non-linear features such as largest Lyapunov Exponent (LLE), correlation dimension (CD), Hurst exponent (HE), Katz fractal dimension (KFD), Higuchi fractal dimension (HFD), are calculated to examine different signal characteristics. Extracted features are used to distinguish the EEG data of ADHD and CS by using various machine learning algorithms.
AbstractList Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children: inattention, hyperactivity, and impulsivity. Treatment of the disease is based on behavioral studies; however, there is no definitive diagnosis method. Hence, the electroencephalography (EEG) signals of ADHD subjects are often investigated to understand changes in the brain. In the proposed study, it is aimed to process and reduce the EEG data of ADHD and control subjects (CS) by using the Douglas-Peucker algorithm and to investigate the effects of the algorithm on EEG signal analysis. EEG data obtained from 18 control subjects (4 boys, 14 girls, mean age 13) and 15 ADHD patients (7 boys, 8 girls, mean age 12) are collected. By using reduced EEG data; time features such as energy, skewness, kurtosis, mean absolute deviation (MAD), root mean square (RMS), peak to peak (PTP) value, Hjorth parameters, and non-linear features such as largest Lyapunov Exponent (LLE), correlation dimension (CD), Hurst exponent (HE), Katz fractal dimension (KFD), Higuchi fractal dimension (HFD), are calculated to examine different signal characteristics. Extracted features are used to distinguish the EEG data of ADHD and CS by using various machine learning algorithms.
Author Cura, Ozlem Karabiber
Celen, Sibel
Aydin, Gamze N.
Atli, Sibel Kocaaslan
Akan, Aydin
Author_xml – sequence: 1
  givenname: Ozlem Karabiber
  surname: Cura
  fullname: Cura, Ozlem Karabiber
  email: ozlem.karabiber@ikcu.edu.tr
  organization: Izmir Katip Celebi University,Dept. of Biomedical Engineering,Izmir,TURKEY
– sequence: 2
  givenname: Gamze N.
  surname: Aydin
  fullname: Aydin, Gamze N.
  email: gamzeaydin.2055@gmail.com
  organization: Izmir Katip Celebi University,Dept. of Biomedical Engineering,Izmir,TURKEY
– sequence: 3
  givenname: Sibel
  surname: Celen
  fullname: Celen, Sibel
  organization: Izmir Katip Celebi University,Dept. of Biomedical Engineering,Izmir,TURKEY
– sequence: 4
  givenname: Sibel Kocaaslan
  surname: Atli
  fullname: Atli, Sibel Kocaaslan
  email: sibel.atli@ikcu.edu.tr
  organization: Izmir Katip Celebi University,Faculty of Medicine,Dept. of Biophysics,Izmir,TURKEY
– sequence: 5
  givenname: Aydin
  surname: Akan
  fullname: Akan, Aydin
  email: akan.aydin@ieu.edu.tr
  organization: Izmir University of Economics,Dept. of Electrical and Electronics Eng.,Izmir,TURKEY
BookMark eNotkF1PwjAYhavRRER-gTeN98N-rF17SdgEIhES4ZqU9u2sQme2YsK_d1GuTk7y5MnJuUc3sYmA0BMlY0qJft4s1pvq9W0lpJBqzAhjY60loZpfoZEuFJVS5CLnjF2jAZOqyIpC8Ts06rpPQggTlDPNBwhKSGBTaCJuPJ6kBPGvlOCDDQnPz9_Qmh74CemMy9A1rYMWb7sQa1xVM_we6mgOHTbR4bI51QfTZWs42a-emhzqpg3p4_iAbn0PweiSQ7R9qTbTebZczRbTyTIL_d6U7TkjxhFLbU6kU8I6w5kEV0hBzd5J5z3lwL0le-ZUzojnhoKmUnkpfCH5ED3-ewMA7L7bcDTteXc5hv8CMXZcHw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/TIPTEKNO56568.2022.9960193
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665454322
1665454326
EISSN 2687-7783
EndPage 4
ExternalDocumentID 9960193
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i166t-b320ad0c1c406d85cda326ed7651abd6dff13e3fc0b2d8420f3a1e9168f65f763
IEDL.DBID RIE
IngestDate Wed Aug 27 02:18:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i166t-b320ad0c1c406d85cda326ed7651abd6dff13e3fc0b2d8420f3a1e9168f65f763
PageCount 4
ParticipantIDs ieee_primary_9960193
PublicationCentury 2000
PublicationDate 2022-Oct.-31
PublicationDateYYYYMMDD 2022-10-31
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-31
  day: 31
PublicationDecade 2020
PublicationTitle Medical Technologies National Congress (Online)
PublicationTitleAbbrev TIPTEKNO
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513293
Score 1.8143579
Snippet Attention Deficit Hyperactivity Disorder (ADHD) is a neurological disease that typically appears in childhood. The disease has three main symptoms in children:...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms ADHD
Behavioral sciences
Classification algorithms
Douglas-Peucker Algorithm
EEG
Electroencephalography
Feature extraction
Fractals
Machine learning
Machine learning algorithms
Process control
Title Detection of Attention Deficit Hyperactivity Disorder Using EEG Signals and Douglas-Peucker Algorithm
URI https://ieeexplore.ieee.org/document/9960193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG2Qkyc1YPydHjzasZWt245EhqgBSYSEG2nXFom6GVIu_vV-7QZG48Hb0mRL0yZ7r1_fex9C1zRSlCuREuDKXRKKSBAOSEDCXCQ8igHkpfUOj8ZsOAsf5tG8gW52XhillBOfKc8-urt8WeYbWyrr2CQRIBx7aC9OWOXV2tVTAKe7AF11rmjgp53p_WSaPY6fLGWxIi5KvfoDPzqpOCAZHKDRdgqVfuTV2xjh5Z-_0hn_O8dD1P627OHJDoyOUEMVLaT6yjipVYFLjXvGVNpG3Fc2N8LgIRxCnUvKNpDA2yBO7GQEOMvu8PNqafOVMS8krqk2mSgnxcC9t2W5XpmX9zaaDbLp7ZDUfRXIKmDMENGlPpd-HuSA5jKJcsmBxCkZsyjgQjKpta2N6twXVCYh9XWXBwp4ZKJZpOGHdIyaRVmoE4ThsJL6YRBIwPlQc5ZSDYwJ3tNxJGMqT1HLLtHio4rOWNSrc_b38Dnat9tUQcMFapr1Rl0C5htx5Tb7CyZarG4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwHA1zHvSksonf5uDRdm2a9OM4XGfnPhzYgbeRNMkcaisju_jXm7TdRPHgrQRaQgJ9L7-8934A3CAiEBUssjRX9izMCLOoRgILZyykJNAgz413eDzxkxl-eCbPDXC79cIIIUrxmbDNY3mXz4tsbUplHZMkognHDtglGGNSubW2FRWN1J4GrzpZ1HWiTjqYpvFw8mhIi5FxIWTXn_jRS6WEkv4BGG8mUSlIXu21Ynb2-Suf8b-zPATtb9MenG7h6Ag0RN4CoidUKbbKYSFhV6lK3Qh7wiRHKJjoY2jpkzItJOAmihOWQgIYx_fwabkwCcuQ5hzWZNuailKMAbtvi2K1VC_vbTDrx-ldYtWdFayl6_vKYh5yKHcyN9N4zkOScappnOCBT1zKuM-lNNVRmTkM8RAjR3rUFZpJhtInUv-SjkEzL3JxAqA-rkQOdl2ukR5L6kdIas6k35MB4QHip6Bllmj-UYVnzOvVOft7-BrsJel4NB8NJsNzsG-2rAKKC9BUq7W41AxAsaty478AXF-vuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Medical+Technologies+National+Congress+%28Online%29&rft.atitle=Detection+of+Attention+Deficit+Hyperactivity+Disorder+Using+EEG+Signals+and+Douglas-Peucker+Algorithm&rft.au=Cura%2C+Ozlem+Karabiber&rft.au=Aydin%2C+Gamze+N.&rft.au=Celen%2C+Sibel&rft.au=Atli%2C+Sibel+Kocaaslan&rft.date=2022-10-31&rft.pub=IEEE&rft.eissn=2687-7783&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FTIPTEKNO56568.2022.9960193&rft.externalDocID=9960193