An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization
This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The ex...
        Saved in:
      
    
          | Published in | 2019 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 819 - 828 | 
|---|---|
| Main Authors | , , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.12.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/SSCI44817.2019.9002805 | 
Cover
| Abstract | This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The experimental setup includes three noise levels, six meta-modeling algorithms, and six benchmark problems from the continuous optimization domain, each for three different dimensionalities. Two robustness definitions: robust regularization and robust composition, are used in the experiments. The meta-modeling techniques are evaluated and compared with respect to the modeling accuracy and the optimal function values. The results clearly show that Kriging, Support Vector Machine and Polynomial regression perform excellently as they achieve high accuracy and the optimal point on the model landscape is close to the true optimum of test functions in most cases. | 
    
|---|---|
| AbstractList | This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The experimental setup includes three noise levels, six meta-modeling algorithms, and six benchmark problems from the continuous optimization domain, each for three different dimensionalities. Two robustness definitions: robust regularization and robust composition, are used in the experiments. The meta-modeling techniques are evaluated and compared with respect to the modeling accuracy and the optimal function values. The results clearly show that Kriging, Support Vector Machine and Polynomial regression perform excellently as they achieve high accuracy and the optimal point on the model landscape is close to the true optimum of test functions in most cases. | 
    
| Author | Sendhoff, Bernhard Ullah, Sibghat Back, Thomas Wang, Hao Menzel, Stefan  | 
    
| Author_xml | – sequence: 1 givenname: Sibghat surname: Ullah fullname: Ullah, Sibghat organization: Leiden University,Leiden Institute of Advanced Computer Science,The Netherlands – sequence: 2 givenname: Hao surname: Wang fullname: Wang, Hao organization: Leiden University,Leiden Institute of Advanced Computer Science,The Netherlands – sequence: 3 givenname: Stefan surname: Menzel fullname: Menzel, Stefan organization: Europe GmbH,Honda Research Institute,Offenbach/Main,Germany – sequence: 4 givenname: Bernhard surname: Sendhoff fullname: Sendhoff, Bernhard organization: Europe GmbH,Honda Research Institute,Offenbach/Main,Germany – sequence: 5 givenname: Thomas surname: Back fullname: Back, Thomas organization: Leiden University,Leiden Institute of Advanced Computer Science,The Netherlands  | 
    
| BookMark | eNo9kN9OwjAchWuiF4o8gYnpCwzb9d96SSYqCYQE8Hrptl-xydbOdcTg0wuCXp3knHzn4rtD1z54QOiRkgmlRD9tNvmc84yqSUqonmhC0oyIKzTW6limGU15JrJbtJ56PGs717vKNDgPbWd6F4PHweIlDCZZhhoa53d4C9WHd597iNiGHq9DuY8Dfobodh6vusG17tsMLvh7dGNNE2F8yRF6f5lt87dksXqd59NF4qiUIqmpYMQKScByMBoIl6yyTFeyVhljwjIi6uPMTWW4EpIaoypQpZW6FEKUbITU-XfvO3P4Mk1TdL1rTX8oKClOFooYK_droThZKC4WjuTDmXQA8A_9rT_AnF82 | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY  | 
    
| DOI | 10.1109/SSCI44817.2019.9002805 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9781728124858 1728124859  | 
    
| EndPage | 828 | 
    
| ExternalDocumentID | ul:oai:scholarlypublications.universiteitleiden.nl:item_2905660 9002805  | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-i1665-d1530f560ef4ea9e0463cf39c6d78335f305d5604aca47561aa7ce7bf69b555b3 | 
    
| IEDL.DBID | UNPAY | 
    
| IngestDate | Sun Oct 26 04:15:10 EDT 2025 Thu Jun 29 18:38:31 EDT 2023  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| License | other-oa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i1665-d1530f560ef4ea9e0463cf39c6d78335f305d5604aca47561aa7ce7bf69b555b3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/1887/135629 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1109_ssci44817_2019_9002805 ieee_primary_9002805  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-Dec. | 
    
| PublicationDateYYYYMMDD | 2019-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-Dec.  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | 2019 IEEE Symposium Series on Computational Intelligence (SSCI) | 
    
| PublicationTitleAbbrev | SSCI | 
    
| PublicationYear | 2019 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 1.743066 | 
    
| Snippet | This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A... | 
    
| SourceID | unpaywall ieee  | 
    
| SourceType | Open Access Repository Publisher  | 
    
| StartPage | 819 | 
    
| SubjectTerms | Design optimization Linear programming machine learning meta-modeling Metamodeling Noise measurement quality engineering robust optimization Robustness surrogate-assisted optimization Uncertainty  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Xplore Digital Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zF_WisonzFzl4tN3CmmY5ytyYwlT2A3YrSZrAcGuHaxH9631JuyriwVshSVte2nzfS973HkI3RBAZc_BUGRGxB4hPvR6gricBKgA9QsHdnu74KRzNg8cFXdTQbaWF0Vq74DPt20t3lh-nKrdbZW3uDgLpHtpjvbDQapWiX9Lh7em0_wDOBmE2YIv7Zeeyasoh2s-Tjfh4F6vVDwAZHqHx7tFF3Mirn2fSV5-_sjL-992OUfNbqodfKhA6QTWdNNDkLsGD9Wbp0n_gflVqEKcGj3UmPFsBzerQ8WyXwnWLgb3iSSrzbYbvXVgHfoblZF3qNJtoPhzM-iOvLJ7gLUkIFo9hKesY4DPaBFpwbTODKdPlKoyZFVoZ-NFjaA6EEgEDFiUEU5pJE3JJKZXdU1RP0kSfIQyUQWqjKGXKBFKRXgw-ngmoppzIMNAt1LD2iDZFfoyoNEULdSqTV23O5-jwaAsA7yYrspO1G3L-950u0IHtVUSRXKJ69pbrK-ACmbx2H8EXQsKzfw priority: 102 providerName: IEEE  | 
    
| Title | An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization | 
    
| URI | https://ieeexplore.ieee.org/document/9002805 http://hdl.handle.net/1887/135629  | 
    
| UnpaywallVersion | submittedVersion | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFH44PYxdtqFjjk1y2LXaYJOaozhFBjoRBXcqSZqATKtoy9j--r3WWsfGDjuHQHj58X2vfd_3AB6ppCoUmKn6VIYOIj5zOoi6jkKoQPTgUmTfdEdjPpx7zwu2KMGxP-EPewGKV6BF24jR4gwqnCHdLkNlPp50X3O1L3VFa49ggVkG9dNKLdEU2e9ClrdLuYDzJNrKj3e5Wn1DjsHlSX9zKBh5ayaxaurP33aMfy_qCmonYR6ZFJBzDSUTVWHajUh_vV1mZh-kVzQWJBtLRiaWTtrvLFWdk9nRsHVPkKuS6UYl-5g8ZUUc5AUfj3WuyqzBfNCf9YZO3irBWVKO8Q3x4XItshdjPSOFSX3AtG0LzUM_lVVZvNYhDntSS89HziSlr42vLBeKMabaN1CONpG5BYIEQRmrGfO19ZSmnRAzOusxwwRV3DN1qKZxDbYHN4wgD3cd3CLOxViWYbgiKHYoSHfoOOXu_1PuoRzvEvOARCBWjUyt18gPxBcZvbKR | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKAXNWjEnz14dMBCu9mjQQyooFFMuC1t1yZE3IhsMfrX-1rGNMaDtyVdt-W16_e99n3vAZz5wpcxR0819EXsIeIz7wJR15MIFYgegeBuT3c4CvrP9GbCJhU4L7UwWmsXfKab9tKd5cepyu1WWYu7g0C2BuuMUsqWaq1C9uu3eevpqTtAd8MPbcgWbxa3F3VTNqGWJ3Px8S5msx8Qcr0Fw9XLl5EjL808k031-Ssv43-_bht2v8V65KGEoR2o6KQOj5cJ6b3Opy4BCOmWxQZJashQZ8KzNdCsEp2MV0lcFwT5K3lMZb7IyJUL7CD3uKC8FkrNXXi-7o27fa8on-BN_QBtHuNi1jbIaLShWnBtc4Mp0-EqiEMrtTL4q8fYTIUSNEQeJUSodChNwCVjTHb2oJqkid4HgqRBaqMYC5WhUvkXMXp5hjLNuC8DqhtQt_aI5ssMGVFhiga0S5OXbc7raPNogRDvBiuyg7XqcvD3k06h1h8P76K7wej2EDZsj2VMyRFUs7dcHyMzyOSJmxBf1Ku2zA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFH44PYxdtqFjjm3ksGu1wSY1R3GKDHQiCu5UkjQBmVaZLWP76_da2zo2dtg5BMLLj-977fu-B_BAJVWhwEzVpzJ0EPGZ00XUdRRCBaIHlyL7pjue8NHCe1qyZQWK_oQ_7AUoXoE27SBGixOocYZ0uwq1xWTae8nVvtQV7T2CBWYZ1E8rtURLZL8LWd4u5QxOk2gnP97lev0NOYbnR_3NoWDktZXEqqU_f9sx_r2oC2gchXlkWkLOJVRMVIdZLyKDzW6VmX2QftlYkGwtGZtYOmm_s1R1TuaFYeueIFcls61K9jF5zIo4yDM-HptcldmAxXAw74-cvFWCs6Ic4xviw-VaZC_GekYKk_qAadsRmod-KquyeK1DHPaklp6PnElKXxtfWS4UY0x1rqAabSNzDQQJgjJWM-Zr6ylNuyFmdNZjhgmquGeaUE_jGuwObhhBHu4muGWcy7Esw3BFUO5QkO5QMeXm_1NuoRq_JeYOiUCs7vOj8AXvnbGQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=An+Empirical+Comparison+of+Meta-Modeling+Techniques+for+Robust+Design+Optimization&rft.au=Ullah%2C+Sibghat&rft.au=Wang%2C+Hao&rft.au=Menzel%2C+Stefan&rft.au=Sendhoff%2C+Bernhard&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=819&rft.epage=828&rft_id=info:doi/10.1109%2FSSCI44817.2019.9002805&rft.externalDocID=9002805 |