An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization

This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The ex...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 819 - 828
Main Authors Ullah, Sibghat, Wang, Hao, Menzel, Stefan, Sendhoff, Bernhard, Back, Thomas
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2019
Subjects
Online AccessGet full text
DOI10.1109/SSCI44817.2019.9002805

Cover

Abstract This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The experimental setup includes three noise levels, six meta-modeling algorithms, and six benchmark problems from the continuous optimization domain, each for three different dimensionalities. Two robustness definitions: robust regularization and robust composition, are used in the experiments. The meta-modeling techniques are evaluated and compared with respect to the modeling accuracy and the optimal function values. The results clearly show that Kriging, Support Vector Machine and Polynomial regression perform excellently as they achieve high accuracy and the optimal point on the model landscape is close to the true optimum of test functions in most cases.
AbstractList This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The experimental setup includes three noise levels, six meta-modeling algorithms, and six benchmark problems from the continuous optimization domain, each for three different dimensionalities. Two robustness definitions: robust regularization and robust composition, are used in the experiments. The meta-modeling techniques are evaluated and compared with respect to the modeling accuracy and the optimal function values. The results clearly show that Kriging, Support Vector Machine and Polynomial regression perform excellently as they achieve high accuracy and the optimal point on the model landscape is close to the true optimum of test functions in most cases.
Author Sendhoff, Bernhard
Ullah, Sibghat
Back, Thomas
Wang, Hao
Menzel, Stefan
Author_xml – sequence: 1
  givenname: Sibghat
  surname: Ullah
  fullname: Ullah, Sibghat
  organization: Leiden University,Leiden Institute of Advanced Computer Science,The Netherlands
– sequence: 2
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Leiden University,Leiden Institute of Advanced Computer Science,The Netherlands
– sequence: 3
  givenname: Stefan
  surname: Menzel
  fullname: Menzel, Stefan
  organization: Europe GmbH,Honda Research Institute,Offenbach/Main,Germany
– sequence: 4
  givenname: Bernhard
  surname: Sendhoff
  fullname: Sendhoff, Bernhard
  organization: Europe GmbH,Honda Research Institute,Offenbach/Main,Germany
– sequence: 5
  givenname: Thomas
  surname: Back
  fullname: Back, Thomas
  organization: Leiden University,Leiden Institute of Advanced Computer Science,The Netherlands
BookMark eNo9kN9OwjAchWuiF4o8gYnpCwzb9d96SSYqCYQE8Hrptl-xydbOdcTg0wuCXp3knHzn4rtD1z54QOiRkgmlRD9tNvmc84yqSUqonmhC0oyIKzTW6limGU15JrJbtJ56PGs717vKNDgPbWd6F4PHweIlDCZZhhoa53d4C9WHd597iNiGHq9DuY8Dfobodh6vusG17tsMLvh7dGNNE2F8yRF6f5lt87dksXqd59NF4qiUIqmpYMQKScByMBoIl6yyTFeyVhljwjIi6uPMTWW4EpIaoypQpZW6FEKUbITU-XfvO3P4Mk1TdL1rTX8oKClOFooYK_droThZKC4WjuTDmXQA8A_9rT_AnF82
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.1109/SSCI44817.2019.9002805
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISBN 9781728124858
1728124859
EndPage 828
ExternalDocumentID ul:oai:scholarlypublications.universiteitleiden.nl:item_2905660
9002805
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-i1665-d1530f560ef4ea9e0463cf39c6d78335f305d5604aca47561aa7ce7bf69b555b3
IEDL.DBID UNPAY
IngestDate Sun Oct 26 04:15:10 EDT 2025
Thu Jun 29 18:38:31 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1665-d1530f560ef4ea9e0463cf39c6d78335f305d5604aca47561aa7ce7bf69b555b3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/1887/135629
PageCount 10
ParticipantIDs unpaywall_primary_10_1109_ssci44817_2019_9002805
ieee_primary_9002805
PublicationCentury 2000
PublicationDate 2019-Dec.
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationTitle 2019 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.743066
Snippet This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 819
SubjectTerms Design optimization
Linear programming
machine learning
meta-modeling
Metamodeling
Noise measurement
quality engineering
robust optimization
Robustness
surrogate-assisted optimization
Uncertainty
SummonAdditionalLinks – databaseName: IEEE Xplore Digital Library
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zF_WisonzFzl4tN3CmmY5ytyYwlT2A3YrSZrAcGuHaxH9631JuyriwVshSVte2nzfS973HkI3RBAZc_BUGRGxB4hPvR6gricBKgA9QsHdnu74KRzNg8cFXdTQbaWF0Vq74DPt20t3lh-nKrdbZW3uDgLpHtpjvbDQapWiX9Lh7em0_wDOBmE2YIv7Zeeyasoh2s-Tjfh4F6vVDwAZHqHx7tFF3Mirn2fSV5-_sjL-992OUfNbqodfKhA6QTWdNNDkLsGD9Wbp0n_gflVqEKcGj3UmPFsBzerQ8WyXwnWLgb3iSSrzbYbvXVgHfoblZF3qNJtoPhzM-iOvLJ7gLUkIFo9hKesY4DPaBFpwbTODKdPlKoyZFVoZ-NFjaA6EEgEDFiUEU5pJE3JJKZXdU1RP0kSfIQyUQWqjKGXKBFKRXgw-ngmoppzIMNAt1LD2iDZFfoyoNEULdSqTV23O5-jwaAsA7yYrspO1G3L-950u0IHtVUSRXKJ69pbrK-ACmbx2H8EXQsKzfw
  priority: 102
  providerName: IEEE
Title An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization
URI https://ieeexplore.ieee.org/document/9002805
http://hdl.handle.net/1887/135629
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFH44PYxdtqFjjk1y2LXaYJOaozhFBjoRBXcqSZqATKtoy9j--r3WWsfGDjuHQHj58X2vfd_3AB6ppCoUmKn6VIYOIj5zOoi6jkKoQPTgUmTfdEdjPpx7zwu2KMGxP-EPewGKV6BF24jR4gwqnCHdLkNlPp50X3O1L3VFa49ggVkG9dNKLdEU2e9ClrdLuYDzJNrKj3e5Wn1DjsHlSX9zKBh5ayaxaurP33aMfy_qCmonYR6ZFJBzDSUTVWHajUh_vV1mZh-kVzQWJBtLRiaWTtrvLFWdk9nRsHVPkKuS6UYl-5g8ZUUc5AUfj3WuyqzBfNCf9YZO3irBWVKO8Q3x4XItshdjPSOFSX3AtG0LzUM_lVVZvNYhDntSS89HziSlr42vLBeKMabaN1CONpG5BYIEQRmrGfO19ZSmnRAzOusxwwRV3DN1qKZxDbYHN4wgD3cd3CLOxViWYbgiKHYoSHfoOOXu_1PuoRzvEvOARCBWjUyt18gPxBcZvbKR
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKAXNWjEnz14dMBCu9mjQQyooFFMuC1t1yZE3IhsMfrX-1rGNMaDtyVdt-W16_e99n3vAZz5wpcxR0819EXsIeIz7wJR15MIFYgegeBuT3c4CvrP9GbCJhU4L7UwWmsXfKab9tKd5cepyu1WWYu7g0C2BuuMUsqWaq1C9uu3eevpqTtAd8MPbcgWbxa3F3VTNqGWJ3Px8S5msx8Qcr0Fw9XLl5EjL808k031-Ssv43-_bht2v8V65KGEoR2o6KQOj5cJ6b3Opy4BCOmWxQZJashQZ8KzNdCsEp2MV0lcFwT5K3lMZb7IyJUL7CD3uKC8FkrNXXi-7o27fa8on-BN_QBtHuNi1jbIaLShWnBtc4Mp0-EqiEMrtTL4q8fYTIUSNEQeJUSodChNwCVjTHb2oJqkid4HgqRBaqMYC5WhUvkXMXp5hjLNuC8DqhtQt_aI5ssMGVFhiga0S5OXbc7raPNogRDvBiuyg7XqcvD3k06h1h8P76K7wej2EDZsj2VMyRFUs7dcHyMzyOSJmxBf1Ku2zA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFH44PYxdtqFjjm3ksGu1wSY1R3GKDHQiCu5UkjQBmVaZLWP76_da2zo2dtg5BMLLj-977fu-B_BAJVWhwEzVpzJ0EPGZ00XUdRRCBaIHlyL7pjue8NHCe1qyZQWK_oQ_7AUoXoE27SBGixOocYZ0uwq1xWTae8nVvtQV7T2CBWYZ1E8rtURLZL8LWd4u5QxOk2gnP97lev0NOYbnR_3NoWDktZXEqqU_f9sx_r2oC2gchXlkWkLOJVRMVIdZLyKDzW6VmX2QftlYkGwtGZtYOmm_s1R1TuaFYeueIFcls61K9jF5zIo4yDM-HptcldmAxXAw74-cvFWCs6Ic4xviw-VaZC_GekYKk_qAadsRmod-KquyeK1DHPaklp6PnElKXxtfWS4UY0x1rqAabSNzDQQJgjJWM-Zr6ylNuyFmdNZjhgmquGeaUE_jGuwObhhBHu4muGWcy7Esw3BFUO5QkO5QMeXm_1NuoRq_JeYOiUCs7vOj8AXvnbGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=An+Empirical+Comparison+of+Meta-Modeling+Techniques+for+Robust+Design+Optimization&rft.au=Ullah%2C+Sibghat&rft.au=Wang%2C+Hao&rft.au=Menzel%2C+Stefan&rft.au=Sendhoff%2C+Bernhard&rft.date=2019-12-01&rft.pub=IEEE&rft.spage=819&rft.epage=828&rft_id=info:doi/10.1109%2FSSCI44817.2019.9002805&rft.externalDocID=9002805