The application of rough set and fuzzy rough set based algorithm to classify incomplete meteorological data
Weather has an important role in people's lives, such as agriculture, economics, socio-economic, disaster management, and finance. So, weather prediction is very important to be considered. In the prediction process we are often faced with the problem of data incompleteness. Therefore, it needs...
Saved in:
| Published in | 2014 International Conference on Data and Software Engineering (ICODSE) pp. 1 - 6 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.11.2014
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 1479981753 9781479981755 |
| DOI | 10.1109/ICODSE.2014.7062674 |
Cover
| Abstract | Weather has an important role in people's lives, such as agriculture, economics, socio-economic, disaster management, and finance. So, weather prediction is very important to be considered. In the prediction process we are often faced with the problem of data incompleteness. Therefore, it needs a proper classification algorithm that able to handle incomplete attribute values in the training data. In this paper, we use two approaches to handle incomplete data, namely are rough set and fuzzy rough set based algorithms. To test the performance of the two algorithms, we use meteorological data to classify rain or dry season. Conclusion of the study showed that the rough set approach is more efficient than the fuzzy rough sets approach. The advantage of fuzzy rough set approach can predict all the conditions that may occur, which can't be done by the rough set approach. |
|---|---|
| AbstractList | Weather has an important role in people's lives, such as agriculture, economics, socio-economic, disaster management, and finance. So, weather prediction is very important to be considered. In the prediction process we are often faced with the problem of data incompleteness. Therefore, it needs a proper classification algorithm that able to handle incomplete attribute values in the training data. In this paper, we use two approaches to handle incomplete data, namely are rough set and fuzzy rough set based algorithms. To test the performance of the two algorithms, we use meteorological data to classify rain or dry season. Conclusion of the study showed that the rough set approach is more efficient than the fuzzy rough sets approach. The advantage of fuzzy rough set approach can predict all the conditions that may occur, which can't be done by the rough set approach. |
| Author | Aprianti, Winda Mukhlash, Imam |
| Author_xml | – sequence: 1 givenname: Winda surname: Aprianti fullname: Aprianti, Winda email: winda.ap17@gmail.com organization: Dept. of Math., Inst. Teknol. Sepuluh Nopember, Surabaya, Indonesia – sequence: 2 givenname: Imam surname: Mukhlash fullname: Mukhlash, Imam email: imamm@matematika.its.ac.id organization: Dept. of Math., Inst. Teknol. Sepuluh Nopember, Surabaya, Indonesia |
| BookMark | eNpNkLFOwzAYhI2AgRaeoItfoMWOHcceUSlQqVIHylz9sf8kFk4cJe6QPj2V6FDpdKe74RtuRh662CEhC85WnDPzul3v3783q4xxuSqYylQh78iMy8KYixS_vxbNi1w8kd9DgxT6PngLyceOxooO8VQ3dMREoXO0Op3P081WwoiOQqjj4FPT0hSpDTCOvpqo72xs-4AJaXuxOMQQ6ws5UAcJnsljBWHEl2vOyc_H5rD-Wu72n9v1227puWJpqVmOokLUTiiTqTKXYKyQzmYKuXLMaK0qpqSRkGnIteDClbzE0kqbFWUu5mTxz_WIeOwH38IwHa9niD9BbVkg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICODSE.2014.7062674 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479979961 9781479979967 9781479979950 1479979953 |
| EndPage | 6 |
| ExternalDocumentID | 7062674 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i160t-805e3fee8d36926b54a9c34dc26e16d09886f06494a28a58313db1bebc4c27b53 |
| IEDL.DBID | RIE |
| ISBN | 1479981753 9781479981755 |
| IngestDate | Wed Jun 26 19:20:56 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i160t-805e3fee8d36926b54a9c34dc26e16d09886f06494a28a58313db1bebc4c27b53 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_7062674 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Nov. |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 International Conference on Data and Software Engineering (ICODSE) |
| PublicationTitleAbbrev | ICODSE |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.5886565 |
| Snippet | Weather has an important role in people's lives, such as agriculture, economics, socio-economic, disaster management, and finance. So, weather prediction is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Approximation methods classification Classification algorithms data mining fuzzy rough set incomplete data Iron Prediction algorithms Rain rough set Rough sets |
| Title | The application of rough set and fuzzy rough set based algorithm to classify incomplete meteorological data |
| URI | https://ieeexplore.ieee.org/document/7062674 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Akyc1YPxODx5lbOvHujNC0AQ1URJuZG3flCAbwe4Af73tGIjGg5el66Fp-vV7r_2930PoJuAgFLMbUDmWA1XWTxGppm3r3zqpD7ujyiwKw0c-GNGHMRvX0O0uFgYASvIZeK5YvuXrXBXuqqwT-db8jmgd1SPB92K1IuszOMXJrYRT9c8qlaHAjzv33ae7l56jclGvauZHPpUSTvqHaLjtyIZFMvMKIz21_qXR-N-eHqHWd-Aeft5B0jGqQdZEM7sU8N5DNc5TXCbnwZ9gcJJpnBbr9WqvzkGbxsnHW76cmvc5NjlWzsqepivs1BycorABPLeffLk9PbEjm7bQqN977Q7aVY6F9jTgvrEAxYCkAEITHodcMprEilCtQg4B134sBE-t2RLTJBQJEyQgWgYSpKIqjCQjJ6iR5RmcIkwiSaQWMZNOckaIWIE1n1SUJrZRqcIz1HQDNVlsZDQm1Rid_119gQ7cZG3C_i5RwywLuLL4b-R1OfFfxk2vDA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uBRBtvarjsjBBTQREi4kbV9U4JsBrsD_PW2YygaD16Wroem6a_3vfZ730PoxmXAJTUbUFqWA5HGT-GxIjXj31qpD7Oj8iwK_QHrjMj9mI5L6PYrFgYAcvIZOLaYv-WrVGb2qqweNAz8DsgO2qWEELoVrRUYr8FqTm5EnIp_WugMuY2w3m0-3j23LJmLOEVDPzKq5AalfYD6m66seSQzJ9PCkatfKo3_7eshqn6H7uGnL6N0hEqQVNDMLAa89VSN0xjn6XnwB2gcJQrH2Wq13Kqzxk3h6O0lXUz16xzrFEuLs6fxEls9B6sprAHPzSddbM5PbOmmVTRqt4bNTq3IslCbuqyhjYmi4McAXPks9JigJAqlT5T0GLhMNULOWWyAS0gij0eU-66vhCtASCK9QFD_GJWTNIEThP1A-ELxkAorOsN5KMEAKBnEkWlUSO8UVexATd7XQhqTYozO_q6-RnudYb836XUHD-do307cOgjwApX1IoNLgwa0uMoXwScfh7JZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Conference+on+Data+and+Software+Engineering+%28ICODSE%29&rft.atitle=The+application+of+rough+set+and+fuzzy+rough+set+based+algorithm+to+classify+incomplete+meteorological+data&rft.au=Aprianti%2C+Winda&rft.au=Mukhlash%2C+Imam&rft.date=2014-11-01&rft.pub=IEEE&rft.isbn=1479981753&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICODSE.2014.7062674&rft.externalDocID=7062674 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479981755/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479981755/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479981755/sc.gif&client=summon&freeimage=true |