The application of rough set and fuzzy rough set based algorithm to classify incomplete meteorological data

Weather has an important role in people's lives, such as agriculture, economics, socio-economic, disaster management, and finance. So, weather prediction is very important to be considered. In the prediction process we are often faced with the problem of data incompleteness. Therefore, it needs...

Full description

Saved in:
Bibliographic Details
Published in2014 International Conference on Data and Software Engineering (ICODSE) pp. 1 - 6
Main Authors Aprianti, Winda, Mukhlash, Imam
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2014
Subjects
Online AccessGet full text
ISBN1479981753
9781479981755
DOI10.1109/ICODSE.2014.7062674

Cover

Abstract Weather has an important role in people's lives, such as agriculture, economics, socio-economic, disaster management, and finance. So, weather prediction is very important to be considered. In the prediction process we are often faced with the problem of data incompleteness. Therefore, it needs a proper classification algorithm that able to handle incomplete attribute values in the training data. In this paper, we use two approaches to handle incomplete data, namely are rough set and fuzzy rough set based algorithms. To test the performance of the two algorithms, we use meteorological data to classify rain or dry season. Conclusion of the study showed that the rough set approach is more efficient than the fuzzy rough sets approach. The advantage of fuzzy rough set approach can predict all the conditions that may occur, which can't be done by the rough set approach.
AbstractList Weather has an important role in people's lives, such as agriculture, economics, socio-economic, disaster management, and finance. So, weather prediction is very important to be considered. In the prediction process we are often faced with the problem of data incompleteness. Therefore, it needs a proper classification algorithm that able to handle incomplete attribute values in the training data. In this paper, we use two approaches to handle incomplete data, namely are rough set and fuzzy rough set based algorithms. To test the performance of the two algorithms, we use meteorological data to classify rain or dry season. Conclusion of the study showed that the rough set approach is more efficient than the fuzzy rough sets approach. The advantage of fuzzy rough set approach can predict all the conditions that may occur, which can't be done by the rough set approach.
Author Aprianti, Winda
Mukhlash, Imam
Author_xml – sequence: 1
  givenname: Winda
  surname: Aprianti
  fullname: Aprianti, Winda
  email: winda.ap17@gmail.com
  organization: Dept. of Math., Inst. Teknol. Sepuluh Nopember, Surabaya, Indonesia
– sequence: 2
  givenname: Imam
  surname: Mukhlash
  fullname: Mukhlash, Imam
  email: imamm@matematika.its.ac.id
  organization: Dept. of Math., Inst. Teknol. Sepuluh Nopember, Surabaya, Indonesia
BookMark eNpNkLFOwzAYhI2AgRaeoItfoMWOHcceUSlQqVIHylz9sf8kFk4cJe6QPj2V6FDpdKe74RtuRh662CEhC85WnDPzul3v3783q4xxuSqYylQh78iMy8KYixS_vxbNi1w8kd9DgxT6PngLyceOxooO8VQ3dMREoXO0Op3P081WwoiOQqjj4FPT0hSpDTCOvpqo72xs-4AJaXuxOMQQ6ws5UAcJnsljBWHEl2vOyc_H5rD-Wu72n9v1227puWJpqVmOokLUTiiTqTKXYKyQzmYKuXLMaK0qpqSRkGnIteDClbzE0kqbFWUu5mTxz_WIeOwH38IwHa9niD9BbVkg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICODSE.2014.7062674
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479979961
9781479979967
9781479979950
1479979953
EndPage 6
ExternalDocumentID 7062674
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i160t-805e3fee8d36926b54a9c34dc26e16d09886f06494a28a58313db1bebc4c27b53
IEDL.DBID RIE
ISBN 1479981753
9781479981755
IngestDate Wed Jun 26 19:20:56 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i160t-805e3fee8d36926b54a9c34dc26e16d09886f06494a28a58313db1bebc4c27b53
PageCount 6
ParticipantIDs ieee_primary_7062674
PublicationCentury 2000
PublicationDate 2014-Nov.
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-Nov.
PublicationDecade 2010
PublicationTitle 2014 International Conference on Data and Software Engineering (ICODSE)
PublicationTitleAbbrev ICODSE
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.5886565
Snippet Weather has an important role in people's lives, such as agriculture, economics, socio-economic, disaster management, and finance. So, weather prediction is...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Approximation methods
classification
Classification algorithms
data mining
fuzzy rough set
incomplete data
Iron
Prediction algorithms
Rain
rough set
Rough sets
Title The application of rough set and fuzzy rough set based algorithm to classify incomplete meteorological data
URI https://ieeexplore.ieee.org/document/7062674
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Akyc1YPxODx5lbOvHujNC0AQ1URJuZG3flCAbwe4Af73tGIjGg5el66Fp-vV7r_2930PoJuAgFLMbUDmWA1XWTxGppm3r3zqpD7ujyiwKw0c-GNGHMRvX0O0uFgYASvIZeK5YvuXrXBXuqqwT-db8jmgd1SPB92K1IuszOMXJrYRT9c8qlaHAjzv33ae7l56jclGvauZHPpUSTvqHaLjtyIZFMvMKIz21_qXR-N-eHqHWd-Aeft5B0jGqQdZEM7sU8N5DNc5TXCbnwZ9gcJJpnBbr9WqvzkGbxsnHW76cmvc5NjlWzsqepivs1BycorABPLeffLk9PbEjm7bQqN977Q7aVY6F9jTgvrEAxYCkAEITHodcMprEilCtQg4B134sBE-t2RLTJBQJEyQgWgYSpKIqjCQjJ6iR5RmcIkwiSaQWMZNOckaIWIE1n1SUJrZRqcIz1HQDNVlsZDQm1Rid_119gQ7cZG3C_i5RwywLuLL4b-R1OfFfxk2vDA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uBRBtvarjsjBBTQREi4kbV9U4JsBrsD_PW2YygaD16Wroem6a_3vfZ730PoxmXAJTUbUFqWA5HGT-GxIjXj31qpD7Oj8iwK_QHrjMj9mI5L6PYrFgYAcvIZOLaYv-WrVGb2qqweNAz8DsgO2qWEELoVrRUYr8FqTm5EnIp_WugMuY2w3m0-3j23LJmLOEVDPzKq5AalfYD6m66seSQzJ9PCkatfKo3_7eshqn6H7uGnL6N0hEqQVNDMLAa89VSN0xjn6XnwB2gcJQrH2Wq13Kqzxk3h6O0lXUz16xzrFEuLs6fxEls9B6sprAHPzSddbM5PbOmmVTRqt4bNTq3IslCbuqyhjYmi4McAXPks9JigJAqlT5T0GLhMNULOWWyAS0gij0eU-66vhCtASCK9QFD_GJWTNIEThP1A-ELxkAorOsN5KMEAKBnEkWlUSO8UVexATd7XQhqTYozO_q6-RnudYb836XUHD-do307cOgjwApX1IoNLgwa0uMoXwScfh7JZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+International+Conference+on+Data+and+Software+Engineering+%28ICODSE%29&rft.atitle=The+application+of+rough+set+and+fuzzy+rough+set+based+algorithm+to+classify+incomplete+meteorological+data&rft.au=Aprianti%2C+Winda&rft.au=Mukhlash%2C+Imam&rft.date=2014-11-01&rft.pub=IEEE&rft.isbn=1479981753&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICODSE.2014.7062674&rft.externalDocID=7062674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479981755/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479981755/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479981755/sc.gif&client=summon&freeimage=true