Skin sodium measured with 23Na MRI at 7.0 T

Skin sodium (Na+) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na+ storage in humans (23Na MRI) at 3.0 T. This work examines the fea...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 28; no. 1; pp. 54 - 62
Main Authors Linz, Peter, Santoro, Davide, Renz, Wolfgang, Rieger, Jan, Ruehle, Anjuli, Ruff, Jan, Deimling, Michael, Rakova, Natalia, Muller, Dominik N., Luft, Friedrich C., Titze, Jens, Niendorf, Thoralf
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0952-3480
1099-1492
1099-1492
DOI10.1002/nbm.3224

Cover

Abstract Skin sodium (Na+) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na+ storage in humans (23Na MRI) at 3.0 T. This work examines the feasibility of high in‐plane spatial resolution 23Na MRI in skin at 7.0 T. A two‐channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two‐dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20–79 years) were investigated. Transverse slices of the calf were imaged with 23Na MRI using a high in‐plane resolution of 0.9 × 0.9 mm2. Skin Na+ content was determined using external agarose standards covering a physiological range of Na+ concentrations. To assess the intra‐subject reproducibility, each volunteer was examined three to five times with each session including a 5‐min walk and repositioning/preparation of the subject. The age dependence of skin Na+ content was investigated. The 23Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in‐plane spatial resolution imaging of human skin. Intra‐subject variability of human skin Na+ content in the volunteer population was <10.3%. An age‐dependent increase in skin Na+ content was observed (r = 0.78). The assignment of Na+ stores with 23Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na+ balance and Na+ storage function of skin. Copyright © 2014 John Wiley & Sons, Ltd. This work demonstrates the feasibility of submillimeter in‐plane spatial resolution 23Na MRI in skin at clinically acceptable acquisition times at 7.0 T. Intra‐subject variability of human skin Na+ content in the volunteer population was <10.3%. An age‐dependent increase in skin Na+ content was observed (r = 0.78). Assigning Na+ stores with 23Na MRI techniques could be improved at 7.0 T compared with current 3.0‐T technology.
AbstractList Skin sodium (Na+) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na+ storage in humans (23Na MRI) at 3.0 T. This work examines the feasibility of high in‐plane spatial resolution 23Na MRI in skin at 7.0 T. A two‐channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two‐dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20–79 years) were investigated. Transverse slices of the calf were imaged with 23Na MRI using a high in‐plane resolution of 0.9 × 0.9 mm2. Skin Na+ content was determined using external agarose standards covering a physiological range of Na+ concentrations. To assess the intra‐subject reproducibility, each volunteer was examined three to five times with each session including a 5‐min walk and repositioning/preparation of the subject. The age dependence of skin Na+ content was investigated. The 23Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in‐plane spatial resolution imaging of human skin. Intra‐subject variability of human skin Na+ content in the volunteer population was <10.3%. An age‐dependent increase in skin Na+ content was observed (r = 0.78). The assignment of Na+ stores with 23Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na+ balance and Na+ storage function of skin. Copyright © 2014 John Wiley & Sons, Ltd. This work demonstrates the feasibility of submillimeter in‐plane spatial resolution 23Na MRI in skin at clinically acceptable acquisition times at 7.0 T. Intra‐subject variability of human skin Na+ content in the volunteer population was <10.3%. An age‐dependent increase in skin Na+ content was observed (r = 0.78). Assigning Na+ stores with 23Na MRI techniques could be improved at 7.0 T compared with current 3.0‐T technology.
Skin sodium (Na(+) ) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23) Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution (23) Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with (23) Na MRI using a high in-plane resolution of 0.9 × 0.9 mm(2) . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na(+) concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23) Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na(+) content was observed (r = 0.78). The assignment of Na(+) stores with (23) Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na(+) balance and Na(+) storage function of skin.Skin sodium (Na(+) ) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23) Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution (23) Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with (23) Na MRI using a high in-plane resolution of 0.9 × 0.9 mm(2) . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na(+) concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23) Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na(+) content was observed (r = 0.78). The assignment of Na(+) stores with (23) Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na(+) balance and Na(+) storage function of skin.
Skin sodium (Na(+) ) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23) Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution (23) Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with (23) Na MRI using a high in-plane resolution of 0.9 × 0.9 mm(2) . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na(+) concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23) Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na(+) content was observed (r = 0.78). The assignment of Na(+) stores with (23) Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na(+) balance and Na(+) storage function of skin.
Skin sodium (Na+) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na+ storage in humans (23Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution 23Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with 23Na MRI using a high in-plane resolution of 0.9 × 0.9 mm2. Skin Na+ content was determined using external agarose standards covering a physiological range of Na+ concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na+ content was investigated. The 23Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na+ content in the volunteer population was <10.3%. An age-dependent increase in skin Na+ content was observed (r = 0.78). The assignment of Na+ stores with 23Na MRI techniques could be improved at 7.0 T compared with current 3.0T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na+ balance and Na+ storage function of skin. Copyright © 2014 John Wiley & Sons, Ltd.
Author Linz, Peter
Muller, Dominik N.
Titze, Jens
Ruehle, Anjuli
Renz, Wolfgang
Santoro, Davide
Ruff, Jan
Rakova, Natalia
Niendorf, Thoralf
Rieger, Jan
Deimling, Michael
Luft, Friedrich C.
Author_xml – sequence: 1
  givenname: Peter
  surname: Linz
  fullname: Linz, Peter
  organization: Interdisciplinary Center for Clinical Research, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
– sequence: 2
  givenname: Davide
  surname: Santoro
  fullname: Santoro, Davide
  organization: Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
– sequence: 3
  givenname: Wolfgang
  surname: Renz
  fullname: Renz, Wolfgang
  organization: Siemens Healthcare, Erlangen, Germany
– sequence: 4
  givenname: Jan
  surname: Rieger
  fullname: Rieger, Jan
  organization: Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
– sequence: 5
  givenname: Anjuli
  surname: Ruehle
  fullname: Ruehle, Anjuli
  organization: Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
– sequence: 6
  givenname: Jan
  surname: Ruff
  fullname: Ruff, Jan
  organization: Siemens Healthcare, Erlangen, Germany
– sequence: 7
  givenname: Michael
  surname: Deimling
  fullname: Deimling, Michael
  organization: Siemens Healthcare, Erlangen, Germany
– sequence: 8
  givenname: Natalia
  surname: Rakova
  fullname: Rakova, Natalia
  organization: Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
– sequence: 9
  givenname: Dominik N.
  surname: Muller
  fullname: Muller, Dominik N.
  organization: Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
– sequence: 10
  givenname: Friedrich C.
  surname: Luft
  fullname: Luft, Friedrich C.
  organization: Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
– sequence: 11
  givenname: Jens
  surname: Titze
  fullname: Titze, Jens
  organization: Interdisciplinary Center for Clinical Research, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
– sequence: 12
  givenname: Thoralf
  surname: Niendorf
  fullname: Niendorf, Thoralf
  email: Correspondence to: T. Niendorf, Max Delbrueck Center for Molecular Medicine, Robert Roessle Strasse 10, 13125 Berlin, Germany., thoralf.niendorf@mdc-berlin.de
  organization: Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25328128$$D View this record in MEDLINE/PubMed
BookMark eNpd0EtLw0AUBeBBFPtQ8BdIwI0gqXcemUmWWrQttBXaisthkpngtHnUTEPtvzeltYKrs7gfh8vpoPOiLAxCNxh6GIA8FnHeo4SwM9TGEEU-ZhE5R22IAuJTFkILdZxbAkDIKLlELRJQEmISttHDfGULz5Xa1rmXG-XqymhvazefHqFT5U1mI09tPNEDb3GFLlKVOXN9zC56f31Z9If--G0w6j-NfYs5MJ-SGKecaq6ZolSYJGYQ8DSIE82FjkERw3CoOBWg40SBiHXKQTPOOSMMItpF94fedVV-1cZtZG5dYrJMFaasncScMhJSFomG3v2jy7Kuiua7RpEoZIEQtFG3R1XHudFyXdlcVTv5O0MD_APY2szsTncMcj-vbOaV-3nl9Hmyzz9v3cZ8n7yqVpILKgL5MR1IPmcz0m86hvQH8kR3tQ
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.3224
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage 62
ExternalDocumentID 3515291091
25328128
NBM3224
ark_67375_WNG_6S4R2C10_H
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-i1604-32b1f63d6d4a337ecb4056f5bcd67db0a2e418a6370dbca07bdf60d4666424093
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Thu Jul 10 20:48:33 EDT 2025
Tue Oct 07 06:55:06 EDT 2025
Mon Jul 21 06:07:01 EDT 2025
Wed Jan 22 16:52:16 EST 2025
Sun Sep 21 06:29:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords radiofrequency coil
sodium
salt
salt balance
MRI
skin
hypertension
ultrahigh-field MR
Language English
License Copyright © 2014 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1604-32b1f63d6d4a337ecb4056f5bcd67db0a2e418a6370dbca07bdf60d4666424093
Notes istex:A633A5C684F4B1C85BEB63A5645A7DB8F62F1152
ArticleID:NBM3224
ark:/67375/WNG-6S4R2C10-H
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25328128
PQID 1629845773
PQPubID 2029982
PageCount 9
ParticipantIDs proquest_miscellaneous_1634283497
proquest_journals_1629845773
pubmed_primary_25328128
wiley_primary_10_1002_nbm_3224_NBM3224
istex_primary_ark_67375_WNG_6S4R2C10_H
PublicationCentury 2000
PublicationDate 2015-01
January 2015
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J. Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur. Radiol. 2010; 20(12): 2806-2816.
Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J. Magn. Reson. 2009; 200(1): 147-152.
Graessl A, Renz W, Hezel F, Dieringer MA, Winter L, Oezerdem C, Rieger J, Kellman P, Santoro D, Lindel TD, Frauenrath T, Pfeiffer H, Niendorf T. Modular 32-channel transceiver coil array for cardiac MRI at 7.0 T. Magn. Reson. Med. 2014; 72(1): 276-290.
Regatte RR, Schweitzer ME. Ultra-high-field MRI of the musculoskeletal system at 7.0 T. J. Magn. Reson. Imaging 2007; 25(2): 262-269.
Kraff O, Fischer A, Nagel AM, Monninghoff C, Ladd ME. MRI at 7 tesla and above: demonstrated and potential capabilities. J. Magn. Reson. Imaging 2014. doi: 10.1002/jmri.24573.
Nielles-Vallespin S, Weber MA, Bock M, Bongers A, Speier P, Combs SE, Wohrle J, Lehmann-Horn F, Essig M, Schad LR. 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn. Reson. Med. 2007; 57(1): 74-81.
Cook NR, Appel LJ, Whelton PK. Lower levels of sodium intake and reduced cardiovascular risk. Circulation, 2014; 129(9): 981-989.
Wahlgren V. In: Magnus R (ed.). Uber die Bedeutung der Gewebe als Chlordepots. Publisher: Utrecht; 1909, IX, pp. 97-112.
Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Muller DN, Schmieder RE, Cavallaro A, Eckardt KU, Uder M, Luft FC, Titze J. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension, 2013; 61(3): 635-640.
Titze J, Lang R, Ilies C, Schwind KH, Kirsch KA, Dietsch P, Luft FC, Hilgers KF. Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Renal Physiol. 2003; 285(6): F1108-F1117.
Haneder S, Juras V, Michaely HJ, Deligianni X, Bieri O, Schoenberg SO, Trattnig S, Zbyn S. In vivo sodium (23Na) imaging of the human kidneys at 7 T: preliminary results. Eur. Radiol. 2014; 24(2): 494-501.
Winter L, Kellman P, Renz W, Grassl A, Hezel F, Thalhammer C, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T. Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0 T: implications for clinical imaging. Eur. Radiol. 2012; 22(10): 2211-2220.
Ivanova LN, Archibasova VK, Shterental I. [Sodium-depositing function of the skin in white rats]. Fiziol. Zh. SSSR Im. I M Sechenova 1978; 64(3): 358-363.
Ugurbil K. Magnetic resonance imaging at ultrahigh fields. IEEE Trans. Biomed. Eng. 2014; 61(5): 1364-1379.
Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schofl C, Renz W, Santoro D, Niendorf T, Muller DN, Neininger M, Cavallaro A, Eckardt KU, Schmieder RE, Luft FC, Uder M, Titze J. (23)Na magnetic resonance imaging of tissue sodium. Hypertension 2012; 59(1): 167-172.
Grassl A, Winter L, Thalhammer C, Renz W, Kellman P, Martin C, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur. J. Radiol. 2013; 82(5): 752-759.
Juras V, Zbyn S, Pressl C, Domayer SE, Hofstaetter JG, Mayerhoefer ME, Windhager R, Trattnig S. Sodium MR imaging of Achilles tendinopathy at 7 T: preliminary results. Radiology 2012; 262(1): 199-205.
Guyton AC, Granger HJ, Coleman TG. Autoregulation of the total systemic circulation and its relation to control of cardiac output and arterial pressure. Circ. Res. 1971; 28(Suppl 1): 93-97.
Konstandin S, Nagel AM. Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. MAGMA 2014; 27(1): 5-19.
Ladd ME. High-field-strength magnetic resonance: potential and limits. Top. Magn. Reson. Imaging, 2007; 18(2): 139-152.
Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller M, Hart HR, Hardy CJ, O'Donnell M, Barber WD. Comparison of linear and circular polarization for magnetic resonance imaging. Semin. Dial. 1985; 64(1): 255-270.
Allen SP, Morrell GR, Peterson B, Park D, Gold GE, Kaggie JD, Bangerter NK. Phase-sensitive sodium B1 mapping. Magn. Reson. Med. 2011; 65(4): 1125-1130.
Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn. Reson. Med. 2009; 62(6): 1565-1573.
Wiig H, Schroder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, Boschmann M, Goss J, Bry M, Rakova N, Dahlmann A, Brenner S, Tenstad O, Nurmi H, Mervaala E, Wagner H, Beck FX, Muller DN, Kerjaschki D, Luft FC, Harrison DG, Alitalo K, Titze J. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 2013; 123(7): 2803-2815.
Trattnig S, Zbyn S, Schmitt B, Friedrich K, Juras V, Szomolanyi P, Bogner W. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur. Radiol. 2012; 22(11): 2338-2346.
Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E, Rascher W, Janka R, Bautz W, Chen J. The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 2010; 55: N23.
Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A. The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest. Radiol. 2011; 46(9): 539-547.
Carinci F, Santoro D, von Samson-Himmelstjerna F, Lindel TD, Dieringer MA, Niendorf T. Characterization of phase-based methods used for transmission field uniformity mapping: a magnetic resonance study at 3.0 T and 7.0 T. PLoS One 2013; 8(3): e57982.
Romanzetti S, Halse M, Kaffanke J, Zilles K, Balcom BJ, Shah NJ. A comparison of three SPRITE techniques for the quantitative 3D imaging of the 23Na spin density on a 4T whole-body machine. J. Magn. Reson. 2006; 179(1): 64-72.
Slagman MC, Kwakernaak AJ, Yazdani S, Laverman GD, van den Born J, Titze J, Navis G. Vascular endothelial growth factor C levels are modulated by dietary salt intake in proteinuric chronic kidney disease patients and in healthy subjects. Nephrol. Dial. Transplant. 2012; 27(3): 978-982.
Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J. Magn. Reson. Imaging, 2013; 38(3): 511-529.
Akoka S, Franconi F, Seguin F, Le Pape A. Radiofrequency map of an NMR coil by imaging. Magn. Reson. Imaging 1993; 11(3): 437-441.
Dahlmann A, Dorfelt K, Eicher F, Linz P, Kopp C, Mossinger I, Horn S, Buschges-Seraphin B, Wabel P, Hammon M, Cavallaro A, Eckardt KU, Kotanko P, Levin NW, Johannes B, Uder M, Luft FC, Muller DN, Titze JM. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 2014. doi: 10.1038/ki.2014.269.
Noebauer-Huhmann IM, Juras V, Pfirrmann CW, Szomolanyi P, Zbyn S, Messner A, Wimmer J, Weber M, Friedrich KM, Stelzeneder D, Trattnig S. Sodium MR imaging of the lumbar intervertebral disk at 7 T: correlation with T2 mapping and modified Pfirrmann score at 3 T-preliminary results. Radiology 2012; 265(2): 555-564.
Niendorf T, Graessl A, Thalhammer C, Dieringer MA, Kraus O, Santoro D, Fuchs K, Hezel F, Waiczies S, Ittermann B, Winter L. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: a physics perspective. J. Magn. Reson. 2013; 229: 208-222.
Baier S, Kramer P, Grudzenski S, Fatar M, Kirsch S, Schad LR. Chlorine and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla. MAGMA, 2014; 27(1): 71-79.
Nagel AM, Lehmann-Horn F, Weber MA, Jurkat-Rott K, Wolf MB, Radbruch A, Umathum R, Semmler W. In vivo Cl MR imaging in humans: a feasibility study. Radiol. 2014; 271(2): 585-595.
Mirkes CC, Hoffmann J, Shajan G, Pohmann R, Scheffler K. High-resolution quantitative sodium imaging at 9.4 tesla. Magn. Reson. Med. 2014. doi: 10.1002/mrm.25096.
Zbyn S, Mlynarik V, Juras V, Szomolanyi P, Trattnig S. Sodium MR imaging of articular cartilage pathologies. Curr. Radiol. Rep. 2014; 2: 41.
Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, Dietsch P, Hilgers KF. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am. J. Physiol. Heart Circ. Physiol. 2004; 287(1): H203-H208.
Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR. Fast three dimensional sodium imaging. Magn. Reson. Med. 1997; 37(5): 706-715.
van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR. Clinical applications of 7 T MRI in the brain. Eur. J. Radiol. 2013; 82(5): 708-718.
Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Muller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschki D, Titze J. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009; 15(5): 545-552.
Graessl A, Muhle M, Schwerter M, Rieger J, Oezerdem C, Santoro D, Lysiak D, Winter L, Hezel F, Waiczies S, Guthoff RF, Falke K, Hosten N, Hadlich S, Krueger PC, Langner S, Stachs O, Niendorf T. Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses. Invest. Radiol. 2014; 49(5): 260-270.
Moser E, Stahlberg F, Ladd ME, Trattnig S. 7-T MR-from research to clinical applications? NMR Biomed. 2012; 25(5): 695-716.
Liu F, Mu J, Yuan Z, Lian Q, Zheng S, Wu G, Liu E. Involvement of the lymphatic system in salt-sensitive hypertension in humans. Med. Sci. Monit. 2011; 17(10): CR542-CR546.
Fiege DP, Romanzetti S, Mirkes CC, Brenner D, Shah NJ. Simultaneous single-quantum and triple-quantum-filtered MRI of 23Na (SISTINA). Magn. Reson. Med. 2013; 69(6): 1691-1696.
Dieringer MA, Renz W, Lindel T, Seifert F, Frauenrath T, von Knobelsdorff-Brenkenhoff F, Waiczies H, Hoffmann W, Rieger J, Pfeiff
2004; 287
2010; 55
2013; 69
2013; 61
2013; 123
2014; 27
2014; 24
2012; 59
2011; 17
2013; 8
2014; 61
1985; 64
2006; 179
2014; 129
2010; 20
1909
2014; 2
1978; 64
2009; 200
2011; 65
2012; 27
2012; 25
2012; 22
2009; 15
2007; 25
2003; 285
2012; 62
2007; 18
2012; 262
2012; 265
2009; 62
1971; 28
2012
2013; 229
2010
2006; 55
2009
2014; 49
2011; 33
2014; 271
2012; 36
2007; 57
2013; 38
1993; 11
1997; 37
2013; 82
2011; 46
2014
2014; 72
2008; 371
References_xml – reference: Winter L, Kellman P, Renz W, Grassl A, Hezel F, Thalhammer C, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T. Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0 T: implications for clinical imaging. Eur. Radiol. 2012; 22(10): 2211-2220.
– reference: Mirkes CC, Hoffmann J, Shajan G, Pohmann R, Scheffler K. High-resolution quantitative sodium imaging at 9.4 tesla. Magn. Reson. Med. 2014. doi: 10.1002/mrm.25096.
– reference: Allen SP, Morrell GR, Peterson B, Park D, Gold GE, Kaggie JD, Bangerter NK. Phase-sensitive sodium B1 mapping. Magn. Reson. Med. 2011; 65(4): 1125-1130.
– reference: Konstandin S, Nagel AM. Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. MAGMA 2014; 27(1): 5-19.
– reference: Kopp C, Linz P, Dahlmann A, Hammon M, Jantsch J, Muller DN, Schmieder RE, Cavallaro A, Eckardt KU, Uder M, Luft FC, Titze J. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension, 2013; 61(3): 635-640.
– reference: Haneder S, Juras V, Michaely HJ, Deligianni X, Bieri O, Schoenberg SO, Trattnig S, Zbyn S. In vivo sodium (23Na) imaging of the human kidneys at 7 T: preliminary results. Eur. Radiol. 2014; 24(2): 494-501.
– reference: Nagel AM, Lehmann-Horn F, Weber MA, Jurkat-Rott K, Wolf MB, Radbruch A, Umathum R, Semmler W. In vivo Cl MR imaging in humans: a feasibility study. Radiol. 2014; 271(2): 585-595.
– reference: Wiig H, Schroder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, Boschmann M, Goss J, Bry M, Rakova N, Dahlmann A, Brenner S, Tenstad O, Nurmi H, Mervaala E, Wagner H, Beck FX, Muller DN, Kerjaschki D, Luft FC, Harrison DG, Alitalo K, Titze J. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 2013; 123(7): 2803-2815.
– reference: Konstandin S, Schad LR. 30 years of sodium/X-nuclei magnetic resonance imaging. MAGMA, 2014; 27(1): 1-4.
– reference: Titze J, Shakibaei M, Schafflhuber M, Schulze-Tanzil G, Porst M, Schwind KH, Dietsch P, Hilgers KF. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am. J. Physiol. Heart Circ. Physiol. 2004; 287(1): H203-H208.
– reference: Ugurbil K. The road to functional imaging and ultrahigh fields. Neuroimage 2012; 62(2): 726-735.
– reference: Grassl A, Winter L, Thalhammer C, Renz W, Kellman P, Martin C, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur. J. Radiol. 2013; 82(5): 752-759.
– reference: Trattnig S, Zbyn S, Schmitt B, Friedrich K, Juras V, Szomolanyi P, Bogner W. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur. Radiol. 2012; 22(11): 2338-2346.
– reference: Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR. Fast three dimensional sodium imaging. Magn. Reson. Med. 1997; 37(5): 706-715.
– reference: Nagel AM, Bock M, Hartmann C, Gerigk L, Neumann JO, Weber MA, Bendszus M, Radbruch A, Wick W, Schlemmer HP, Semmler W, Biller A. The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest. Radiol. 2011; 46(9): 539-547.
– reference: Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J. Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises. Eur. Radiol. 2010; 20(12): 2806-2816.
– reference: Baier S, Kramer P, Grudzenski S, Fatar M, Kirsch S, Schad LR. Chlorine and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla. MAGMA, 2014; 27(1): 71-79.
– reference: Dieringer MA, Renz W, Lindel T, Seifert F, Frauenrath T, von Knobelsdorff-Brenkenhoff F, Waiczies H, Hoffmann W, Rieger J, Pfeiffer H, Ittermann B, Schulz-Menger J, Niendorf T. Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7 T. J. Magn. Reson. Imaging 2011; 33(3): 736-741.
– reference: Ladd ME. High-field-strength magnetic resonance: potential and limits. Top. Magn. Reson. Imaging, 2007; 18(2): 139-152.
– reference: Carinci F, Santoro D, von Samson-Himmelstjerna F, Lindel TD, Dieringer MA, Niendorf T. Characterization of phase-based methods used for transmission field uniformity mapping: a magnetic resonance study at 3.0 T and 7.0 T. PLoS One 2013; 8(3): e57982.
– reference: Glover GH, Hayes CE, Pelc NJ, Edelstein WA, Mueller M, Hart HR, Hardy CJ, O'Donnell M, Barber WD. Comparison of linear and circular polarization for magnetic resonance imaging. Semin. Dial. 1985; 64(1): 255-270.
– reference: Cook NR, Appel LJ, Whelton PK. Lower levels of sodium intake and reduced cardiovascular risk. Circulation, 2014; 129(9): 981-989.
– reference: van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR. Clinical applications of 7 T MRI in the brain. Eur. J. Radiol. 2013; 82(5): 708-718.
– reference: Rahmer J, Bornert P, Groen J, Bos C. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn. Reson. Med. 2006; 55(5): 1075-1082.
– reference: Lawes CM, Vander Hoorn S, Rodgers A, International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet, 2008; 371(9623): 1513-1518.
– reference: Nielles-Vallespin S, Weber MA, Bock M, Bongers A, Speier P, Combs SE, Wohrle J, Lehmann-Horn F, Essig M, Schad LR. 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle. Magn. Reson. Med. 2007; 57(1): 74-81.
– reference: Niendorf T, Graessl A, Thalhammer C, Dieringer MA, Kraus O, Santoro D, Fuchs K, Hezel F, Waiczies S, Ittermann B, Winter L. Progress and promises of human cardiac magnetic resonance at ultrahigh fields: a physics perspective. J. Magn. Reson. 2013; 229: 208-222.
– reference: Guyton AC, Granger HJ, Coleman TG. Autoregulation of the total systemic circulation and its relation to control of cardiac output and arterial pressure. Circ. Res. 1971; 28(Suppl 1): 93-97.
– reference: Graessl A, Renz W, Hezel F, Dieringer MA, Winter L, Oezerdem C, Rieger J, Kellman P, Santoro D, Lindel TD, Frauenrath T, Pfeiffer H, Niendorf T. Modular 32-channel transceiver coil array for cardiac MRI at 7.0 T. Magn. Reson. Med. 2014; 72(1): 276-290.
– reference: Romanzetti S, Halse M, Kaffanke J, Zilles K, Balcom BJ, Shah NJ. A comparison of three SPRITE techniques for the quantitative 3D imaging of the 23Na spin density on a 4T whole-body machine. J. Magn. Reson. 2006; 179(1): 64-72.
– reference: Slagman MC, Kwakernaak AJ, Yazdani S, Laverman GD, van den Born J, Titze J, Navis G. Vascular endothelial growth factor C levels are modulated by dietary salt intake in proteinuric chronic kidney disease patients and in healthy subjects. Nephrol. Dial. Transplant. 2012; 27(3): 978-982.
– reference: Liu F, Mu J, Yuan Z, Lian Q, Zheng S, Wu G, Liu E. Involvement of the lymphatic system in salt-sensitive hypertension in humans. Med. Sci. Monit. 2011; 17(10): CR542-CR546.
– reference: Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and RF circuit co-simulation. J. Magn. Reson. 2009; 200(1): 147-152.
– reference: Kraff O, Fischer A, Nagel AM, Monninghoff C, Ladd ME. MRI at 7 tesla and above: demonstrated and potential capabilities. J. Magn. Reson. Imaging 2014. doi: 10.1002/jmri.24573.
– reference: Thalhammer C, Renz W, Winter L, Hezel F, Rieger J, Pfeiffer H, Graessl A, Seifert F, Hoffmann W, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Kellman P, Niendorf T. Two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application. J. Magn. Reson. Imaging 2012; 36(4): 847-857.
– reference: Graessl A, Muhle M, Schwerter M, Rieger J, Oezerdem C, Santoro D, Lysiak D, Winter L, Hezel F, Waiczies S, Guthoff RF, Falke K, Hosten N, Hadlich S, Krueger PC, Langner S, Stachs O, Niendorf T. Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses. Invest. Radiol. 2014; 49(5): 260-270.
– reference: Titze J, Lang R, Ilies C, Schwind KH, Kirsch KA, Dietsch P, Luft FC, Hilgers KF. Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Renal Physiol. 2003; 285(6): F1108-F1117.
– reference: Ugurbil K. Magnetic resonance imaging at ultrahigh fields. IEEE Trans. Biomed. Eng. 2014; 61(5): 1364-1379.
– reference: Fiege DP, Romanzetti S, Mirkes CC, Brenner D, Shah NJ. Simultaneous single-quantum and triple-quantum-filtered MRI of 23Na (SISTINA). Magn. Reson. Med. 2013; 69(6): 1691-1696.
– reference: Wahlgren V. In: Magnus R (ed.). Uber die Bedeutung der Gewebe als Chlordepots. Publisher: Utrecht; 1909, IX, pp. 97-112.
– reference: Dahlmann A, Dorfelt K, Eicher F, Linz P, Kopp C, Mossinger I, Horn S, Buschges-Seraphin B, Wabel P, Hammon M, Cavallaro A, Eckardt KU, Kotanko P, Levin NW, Johannes B, Uder M, Luft FC, Muller DN, Titze JM. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 2014. doi: 10.1038/ki.2014.269.
– reference: Zbyn S, Mlynarik V, Juras V, Szomolanyi P, Trattnig S. Sodium MR imaging of articular cartilage pathologies. Curr. Radiol. Rep. 2014; 2: 41.
– reference: Juras V, Zbyn S, Pressl C, Domayer SE, Hofstaetter JG, Mayerhoefer ME, Windhager R, Trattnig S. Sodium MR imaging of Achilles tendinopathy at 7 T: preliminary results. Radiology 2012; 262(1): 199-205.
– reference: Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E, Rascher W, Janka R, Bautz W, Chen J. The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 2010; 55: N23.
– reference: Noebauer-Huhmann IM, Juras V, Pfirrmann CW, Szomolanyi P, Zbyn S, Messner A, Wimmer J, Weber M, Friedrich KM, Stelzeneder D, Trattnig S. Sodium MR imaging of the lumbar intervertebral disk at 7 T: correlation with T2 mapping and modified Pfirrmann score at 3 T-preliminary results. Radiology 2012; 265(2): 555-564.
– reference: Moser E, Stahlberg F, Ladd ME, Trattnig S. 7-T MR-from research to clinical applications? NMR Biomed. 2012; 25(5): 695-716.
– reference: Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J. Magn. Reson. Imaging, 2013; 38(3): 511-529.
– reference: Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schofl C, Renz W, Santoro D, Niendorf T, Muller DN, Neininger M, Cavallaro A, Eckardt KU, Schmieder RE, Luft FC, Uder M, Titze J. (23)Na magnetic resonance imaging of tissue sodium. Hypertension 2012; 59(1): 167-172.
– reference: Regatte RR, Schweitzer ME. Ultra-high-field MRI of the musculoskeletal system at 7.0 T. J. Magn. Reson. Imaging 2007; 25(2): 262-269.
– reference: Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Muller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschki D, Titze J. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009; 15(5): 545-552.
– reference: Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn. Reson. Med. 2009; 62(6): 1565-1573.
– reference: Ivanova LN, Archibasova VK, Shterental I. [Sodium-depositing function of the skin in white rats]. Fiziol. Zh. SSSR Im. I M Sechenova 1978; 64(3): 358-363.
– reference: Akoka S, Franconi F, Seguin F, Le Pape A. Radiofrequency map of an NMR coil by imaging. Magn. Reson. Imaging 1993; 11(3): 437-441.
– year: 2009
– volume: 11
  start-page: 437
  issue: 3
  year: 1993
  end-page: 441
  article-title: Radiofrequency map of an NMR coil by imaging
  publication-title: Magn. Reson. Imaging
– volume: 123
  start-page: 2803
  issue: 7
  year: 2013
  end-page: 2815
  article-title: Immune cells control skin lymphatic electrolyte homeostasis and blood pressure
  publication-title: J. Clin. Invest
– volume: 25
  start-page: 262
  issue: 2
  year: 2007
  end-page: 269
  article-title: of the musculoskeletal system at 7.0 T
  publication-title: J. Magn. Reson. Imaging
– volume: 55
  start-page: N23
  year: 2010
  article-title: The Virtual Family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys. Med. Biol.
– volume: 271
  start-page: 585
  issue: 2
  year: 2014
  end-page: 595
  article-title: In vivo Cl MR imaging in humans: a feasibility study
  publication-title: Radiol.
– start-page: 97
  year: 1909
  end-page: 112
– volume: 59
  start-page: 167
  issue: 1
  year: 2012
  end-page: 172
  article-title: (23)Na magnetic resonance imaging of tissue sodium
  publication-title: Hypertension
– volume: 17
  start-page: CR542
  issue: 10
  year: 2011
  end-page: CR546
  article-title: Involvement of the lymphatic system in salt‐sensitive hypertension in humans
  publication-title: Med. Sci. Monit.
– volume: 62
  start-page: 1565
  issue: 6
  year: 2009
  end-page: 1573
  article-title: Sodium MRI using a density‐adapted 3D radial acquisition technique
  publication-title: Magn. Reson. Med.
– volume: 64
  start-page: 358
  issue: 3
  year: 1978
  end-page: 363
  article-title: Sodium‐depositing function of the skin in white rats
  publication-title: Fiziol. Zh. SSSR Im. I M Sechenova
– volume: 25
  start-page: 695
  issue: 5
  year: 2012
  end-page: 716
  article-title: 7‐T MR—from research to clinical applications?
  publication-title: NMR Biomed
– volume: 27
  start-page: 978
  issue: 3
  year: 2012
  end-page: 982
  article-title: Vascular endothelial growth factor C levels are modulated by dietary salt intake in proteinuric chronic kidney disease patients and in healthy subjects
  publication-title: Nephrol. Dial. Transplant.
– volume: 57
  start-page: 74
  issue: 1
  year: 2007
  end-page: 81
  article-title: 3D radial projection technique with ultrashort echo times for sodium MRI: clinical applications in human brain and skeletal muscle
  publication-title: Magn. Reson. Med.
– volume: 27
  start-page: 5
  issue: 1
  year: 2014
  end-page: 19
  article-title: Measurement techniques for magnetic resonance imaging of fast relaxing nuclei
  publication-title: MAGMA
– year: 2014
  article-title: High‐resolution quantitative sodium imaging at 9.4 tesla
  publication-title: Magn. Reson. Med.
– volume: 46
  start-page: 539
  issue: 9
  year: 2011
  end-page: 547
  article-title: The potential of relaxation‐weighted sodium magnetic resonance imaging as demonstrated on brain tumors
  publication-title: Invest. Radiol.
– volume: 61
  start-page: 1364
  issue: 5
  year: 2014
  end-page: 1379
  article-title: Magnetic resonance imaging at ultrahigh fields
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 200
  start-page: 147
  issue: 1
  year: 2009
  end-page: 152
  article-title: Fast MRI coil analysis based on 3‐D electromagnetic and RF circuit co‐simulation
  publication-title: J. Magn. Reson
– year: 2014
  article-title: MRI at 7 tesla and above: demonstrated and potential capabilities
  publication-title: J. Magn. Reson. Imaging
– volume: 22
  start-page: 2211
  issue: 10
  year: 2012
  end-page: 2220
  article-title: Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0 T: implications for clinical imaging
  publication-title: Eur. Radiol.
– volume: 229
  start-page: 208
  year: 2013
  end-page: 222
  article-title: Progress and promises of human cardiac magnetic resonance at ultrahigh fields: a physics perspective
  publication-title: J. Magn. Reson.
– volume: 62
  start-page: 726
  issue: 2
  year: 2012
  end-page: 735
  article-title: The road to functional imaging and ultrahigh fields
  publication-title: Neuroimage
– volume: 72
  start-page: 276
  issue: 1
  year: 2014
  end-page: 290
  article-title: Modular 32‐channel transceiver coil array for cardiac MRI at 7.0 T
  publication-title: Magn. Reson. Med.
– volume: 262
  start-page: 199
  issue: 1
  year: 2012
  end-page: 205
  article-title: Sodium MR imaging of Achilles tendinopathy at 7 T: preliminary results
  publication-title: Radiology
– volume: 371
  start-page: 1513
  issue: 9623
  year: 2008
  end-page: 1518
  article-title: Global burden of blood‐pressure‐related disease, 2001
  publication-title: Lancet
– volume: 65
  start-page: 1125
  issue: 4
  year: 2011
  end-page: 1130
  article-title: Phase‐sensitive sodium B1 mapping
  publication-title: Magn. Reson. Med.
– volume: 287
  start-page: H203
  issue: 1
  year: 2004
  end-page: H208
  article-title: Glycosaminoglycan polymerization may enable osmotically inactive Na storage in the skin
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 27
  start-page: 71
  issue: 1
  year: 2014
  end-page: 79
  article-title: Chlorine and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla
  publication-title: MAGMA
– volume: 22
  start-page: 2338
  issue: 11
  year: 2012
  end-page: 2346
  article-title: Advanced MR methods at ultra‐high field (7 Tesla) for clinical musculoskeletal applications
  publication-title: Eur. Radiol.
– volume: 27
  start-page: 1
  issue: 1
  year: 2014
  end-page: 4
  article-title: 30 years of sodium/X‐nuclei magnetic resonance imaging
  publication-title: MAGMA
– volume: 24
  start-page: 494
  issue: 2
  year: 2014
  end-page: 501
  article-title: In vivo sodium ( Na) imaging of the human kidneys at 7 T: preliminary results
  publication-title: Eur. Radiol.
– volume: 61
  start-page: 635
  issue: 3
  year: 2013
  end-page: 640
  article-title: Na magnetic resonance imaging‐determined tissue sodium in healthy subjects and hypertensive patients
  publication-title: Hypertension
– year: 2014
  article-title: Magnetic resonance‐determined sodium removal from tissue stores in hemodialysis patients
  publication-title: Kidney Int.
– volume: 82
  start-page: 752
  issue: 5
  year: 2013
  end-page: 759
  article-title: Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T
  publication-title: Eur. J. Radiol.
– volume: 69
  start-page: 1691
  issue: 6
  year: 2013
  end-page: 1696
  article-title: Simultaneous single‐quantum and triple‐quantum‐filtered MRI of Na (SISTINA)
  publication-title: Magn. Reson. Med.
– volume: 28
  start-page: 93
  issue: Suppl 1
  year: 1971
  end-page: 97
  article-title: Autoregulation of the total systemic circulation and its relation to control of cardiac output and arterial pressure
  publication-title: Circ. Res.
– volume: 82
  start-page: 708
  issue: 5
  year: 2013
  end-page: 718
  article-title: Clinical applications of 7 T MRI in the brain
  publication-title: Eur. J. Radiol
– volume: 36
  start-page: 847
  issue: 4
  year: 2012
  end-page: 857
  article-title: Two‐dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application
  publication-title: J. Magn. Reson. Imaging
– volume: 15
  start-page: 545
  issue: 5
  year: 2009
  end-page: 552
  article-title: Macrophages regulate salt‐dependent volume and blood pressure by a vascular endothelial growth factor‐C‐dependent buffering mechanism
  publication-title: Nat. Med.
– year: 2010
– volume: 129
  start-page: 981
  issue: 9
  year: 2014
  end-page: 989
  article-title: Lower levels of sodium intake and reduced cardiovascular risk
  publication-title: Circulation
– year: 2012
– volume: 2
  start-page: 41
  year: 2014
  article-title: Sodium MR imaging of articular cartilage pathologies
  publication-title: Curr. Radiol. Rep.
– volume: 8
  start-page: e57982
  issue: 3
  year: 2013
  article-title: Characterization of phase‐based methods used for transmission field uniformity mapping: a magnetic resonance study at 3.0 T and 7.0 T
  publication-title: PLoS One
– volume: 20
  start-page: 2806
  issue: 12
  year: 2010
  end-page: 2816
  article-title: Toward cardiovascular MRI at 7 T: clinical needs, technical solutions and research promises
  publication-title: Eur. Radiol.
– volume: 285
  start-page: F1108
  issue: 6
  year: 2003
  end-page: F1117
  article-title: Osmotically inactive skin Na storage in rats
  publication-title: Am. J. Physiol. Renal Physiol.
– volume: 38
  start-page: 511
  issue: 3
  year: 2013
  end-page: 529
  article-title: Biomedical applications of sodium MRI in vivo
  publication-title: J. Magn. Reson. Imaging
– volume: 55
  start-page: 1075
  issue: 5
  year: 2006
  end-page: 1082
  article-title: Three‐dimensional radial ultrashort echo‐time imaging with T2 adapted sampling
  publication-title: Magn. Reson. Med.
– volume: 18
  start-page: 139
  issue: 2
  year: 2007
  end-page: 152
  article-title: High‐field‐strength magnetic resonance: potential and limits
  publication-title: Top. Magn. Reson. Imaging
– volume: 265
  start-page: 555
  issue: 2
  year: 2012
  end-page: 564
  article-title: Sodium MR imaging of the lumbar intervertebral disk at 7 T: correlation with T2 mapping and modified Pfirrmann score at 3 T—preliminary results
  publication-title: Radiology
– volume: 49
  start-page: 260
  issue: 5
  year: 2014
  end-page: 270
  article-title: Ophthalmic magnetic resonance imaging at 7 T using a 6‐channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses
  publication-title: Invest. Radiol.
– volume: 33
  start-page: 736
  issue: 3
  year: 2011
  end-page: 741
  article-title: Design and application of a four‐channel transmit/receive surface coil for functional cardiac imaging at 7 T
  publication-title: J. Magn. Reson. Imaging
– volume: 37
  start-page: 706
  issue: 5
  year: 1997
  end-page: 715
  article-title: Fast three dimensional sodium imaging
  publication-title: Magn. Reson. Med.
– volume: 64
  start-page: 255
  issue: 1
  year: 1985
  end-page: 270
  article-title: Comparison of linear and circular polarization for magnetic resonance imaging
  publication-title: Semin. Dial.
– volume: 179
  start-page: 64
  issue: 1
  year: 2006
  end-page: 72
  article-title: A comparison of three SPRITE techniques for the quantitative 3D imaging of the Na spin density on a 4T whole‐body machine
  publication-title: J. Magn. Reson
SSID ssj0008432
Score 2.0832567
Snippet Skin sodium (Na+) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been...
Skin sodium (Na(+) ) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently...
SourceID proquest
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 54
SubjectTerms Adult
Aged
Humans
hypertension
Magnetic Resonance Imaging - methods
Male
Middle Aged
MRI
Phantoms, Imaging
Protons
Radio Waves
radiofrequency coil
Reproducibility of Results
salt
salt balance
Signal-To-Noise Ratio
skin
Skin - metabolism
sodium
Sodium - metabolism
ultrahigh-field MR
Young Adult
Title Skin sodium measured with 23Na MRI at 7.0 T
URI https://api.istex.fr/ark:/67375/WNG-6S4R2C10-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.3224
https://www.ncbi.nlm.nih.gov/pubmed/25328128
https://www.proquest.com/docview/1629845773
https://www.proquest.com/docview/1634283497
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0952-3480
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008432
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFH6I4HJxqVvdiCBeZOpMkknGoxa1Cu2hKgoeQraBIm3FtiD-epPMTF3wIJ7mkITJ5L1kvrfkewCHDnSHG4pRpiWJqNWpOwdZEnFmcpIzpm2gzG93WOue3jymj2VWpb8LU_BDTB1ufmeE89pvcKlGJ19IQ1W_4bTRU4EmhAVrqvvJHJXRUJvMAQgcEZrFFe9sjE-qgQ6O-pV8-w1bfoeq4V9zuQxP1SyLFJPnxmSsGvr9B4Hj_z5jBZZKCIrOCp1ZhRk7qMFCs6r8VoP5dhlwr8FcyBDVozU49mW60GhoepM-6heeRYO8Gxdh0pGo3b1Gcox4I0Z363B_eXHXbEVlpYWolzAfGsEqyRkxzFBJCLdaORzH8lRpw7hRscSWJplkhMdGaRlzZXIWG-psH-ogwSnZgNnBcGC3AOmUK-XNKKwJ1cQoKjWRVnrXiZU0rsNRWHXxUrBpCPn67JPLeCoeOleC3dIubjrLpFWH3UosotxXI5EwfJrRlHNSh4Nps1seH-aQAzuc-D7Es8g5JazDZiHO6ctwSrCDNJmbRRDKtKFgb8bCiUN4cYjOeds_t__acQcWHZZKC-_MLsyOXyd2z-GVsdoPmvkBXTfgag
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIdheBhQ2ug0wEuIFpUtsx860p61idLDkoXRiD0iWf0WaprZobaWJv56z05QN8YB4yoNtxfHdOd_d2d8BvEPQHW8oJoXVLOHe5rgPiiyRwtWsFsL6SJlfVmJwwT9f5pdrcNTehWn4IVYBt2AZcb8OBh4C0gd3WEPNuIfqyB_AQy7QTQmIaPibO6rgsToZQgiaMF6kLfNsSg_akQhIw1re_g1d3ger8W9z-gS-t_NsDplc9xZz07M__6Bw_M8PeQpbSxRKjhu1eQZrftKBjX5b_K0Dj8tlzr0Dj-IhUTt7Dh9CpS4ym7qrxZiMm-CiIyGSSyirNCmHZ0TPieylZPQCLk4_jvqDZFlsIbnKRMiOUJPVgjnhuGZMemsQyok6N9YJ6UyqqedZoQWTqTNWp9K4WqSOo_vDERUcsm1Yn0wn_iUQm0tjgidFLeOWOcO1ZdrrED3xmqddeB-XXf1oCDWUvrkO58tkrr5Vn5T4yoe0j87JoAv7rVzU0rRmKhP0sOC5lKwLb1fNuDwh06EnfroIfVggkkM97MJOI8_Vy2jOKKKaAmcRpbJqaAicqUJxqCAOVZ2U4bn7rx3fwMZgVJ6r87Pqyx5sIrTKm2DNPqzPbxb-FcKXuXkd1fQXipfkiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RKmgvtKQUArR1pYoL2rDr50ac2tA0FLKqAggOSJZfKyGUBJFEqvj12N5s2qIeqp72YFvr9cx4vxmPvwH45EF3vKGY5EaRhDrD_D7Is0RwW5KSc-MiZX6_4L0L-v2KXS3BYX0XpuKHWATcgmXE_ToYuLuz5cFvrKF62PLqSJ_Bc8raecjnOxr84o7KaaxO5iEETgjN05p5NsUH9UgPSMNa_vwbuvwTrMa_TfcVXNfzrJJMbluzqW6ZhycUjv_5Ia9hbY5C0edKbdZhyY0a8KJTF39rwGp_fubegJWYJGomb2A_VOpCk7G9mQ3RsAouWhQiuQiTQqH-4BipKRKtFJ1vwEX363mnl8yLLSQ3GQ-nI1hnJSeWW6oIEc5oD-V4ybSxXFidKuxolitORGq1UanQtuSppd79oR4VtMlbWB6NR24LkGFC6-BJYUOoIVZTZYhyKkRPnKJpE_bissu7ilBDqvvbkF8mmLwsvkl-Rge4452TXhN2a7nIuWlNZMZxO6dMCNKEj4tmvzzhpEON3HgW-pBAJOf1sAmblTwXL8OMYI9qcj-LKJVFQ0XgjKUXhwzikMWXfnhu_2vHD7D646grT4-Lkx146ZEVq2I1u7A8vZ-5dx69TPX7qKWPVinkDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin+sodium+measured+with+23Na+MRI+at+7.0+T&rft.jtitle=NMR+in+biomedicine&rft.au=Linz%2C+Peter&rft.au=Santoro%2C+Davide&rft.au=Renz%2C+Wolfgang&rft.au=Rieger%2C+Jan&rft.date=2015-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=28&rft.issue=1&rft.spage=54&rft.epage=62&rft_id=info:doi/10.1002%2Fnbm.3224&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_6S4R2C10_H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon