Online learning of a full body push recovery controller for omnidirectional walking

Bipedal humanoid robots are inherently unstable to external perturbations, especially when they are walking on uneven terrain in the presence of unforeseen collisions. In this paper, we present a push recovery controller for position-controlled humanoid robots which is tightly integrated with an omn...

Full description

Saved in:
Bibliographic Details
Published in2011 11th IEEE-RAS International Conference on Humanoid Robots pp. 1 - 6
Main Authors Seung-Joon Yi, Byoung-Tak Zhang, Hong, Dennis, Lee, Daniel D.
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.10.2011
Subjects
Online AccessGet full text
ISBN9781612848662
1612848664
ISSN2164-0572
DOI10.1109/Humanoids.2011.6100896

Cover

Abstract Bipedal humanoid robots are inherently unstable to external perturbations, especially when they are walking on uneven terrain in the presence of unforeseen collisions. In this paper, we present a push recovery controller for position-controlled humanoid robots which is tightly integrated with an omnidirectional walk controller. The high level push recovery controller learns to integrate three biomechanically motivated push recovery strategies with a zero moment point based omnidirectional walk controller. Reinforcement learning is used to map the robot walking state, consisting of foot configuration and onboard sensory information, to the best combination of the three biomechanical responses needed to reject external perturbations. Experimental results show how this online method can stabilize an inexpensive, commercially- available DARwin-OP small humanoid robot.
AbstractList Bipedal humanoid robots are inherently unstable to external perturbations, especially when they are walking on uneven terrain in the presence of unforeseen collisions. In this paper, we present a push recovery controller for position-controlled humanoid robots which is tightly integrated with an omnidirectional walk controller. The high level push recovery controller learns to integrate three biomechanically motivated push recovery strategies with a zero moment point based omnidirectional walk controller. Reinforcement learning is used to map the robot walking state, consisting of foot configuration and onboard sensory information, to the best combination of the three biomechanical responses needed to reject external perturbations. Experimental results show how this online method can stabilize an inexpensive, commercially- available DARwin-OP small humanoid robot.
Author Hong, Dennis
Seung-Joon Yi
Byoung-Tak Zhang
Lee, Daniel D.
Author_xml – sequence: 1
  surname: Seung-Joon Yi
  fullname: Seung-Joon Yi
  email: yiseung@seas.upenn.edu
  organization: GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  surname: Byoung-Tak Zhang
  fullname: Byoung-Tak Zhang
  email: btzhang@ceas.snu.ac.kr
  organization: BI Lab., Seoul Nat. Univ., Seoul, South Korea
– sequence: 3
  givenname: Dennis
  surname: Hong
  fullname: Hong, Dennis
  email: dhong@vt.edu
  organization: RoMeLa Lab., Virginia Tech, Blacksburg, VA, USA
– sequence: 4
  givenname: Daniel D.
  surname: Lee
  fullname: Lee, Daniel D.
  email: ddlee@seas.upenn.edu
  organization: GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA
BookMark eNpVkM1KAzEURiNWsNY-gSB5gam5mZmbZClFrVDoQl2XTH40mklKplXm7S3YjauPw4Gz-K7IJOXkCLkFtgBg6m516HXKwQ4LzgAWCIxJhWdkroQEBC4biRLP_zHyCZlywKZireCXZD4Mn4yxGqRUHKfkZZNiSI5Gp0sK6Z1mTzX1hxhpl-1Id4fhgxZn8rcrIzU57UuO0RXqc6G5T8GGo92HnHSkPzp-HRvX5MLrOLj5aWfk7fHhdbmq1pun5-X9ugrQ4r7yotVCsq4RohWMW9PW2hloO8Mbg01jmVBKo5UdOqvQaI9ead5pkEJ6DvWM3Px1g3Nuuyuh12Xcnm6pfwEC8VkE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/Humanoids.2011.6100896
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781612848686
1612848680
1612848672
9781612848679
EndPage 6
ExternalDocumentID 6100896
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i156t-f75a780b4775702dc53aec15bc24c644d0799a6d8b6ed96caf6f9a2ba1878f213
IEDL.DBID RIE
ISBN 9781612848662
1612848664
ISSN 2164-0572
IngestDate Wed Aug 27 03:11:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-f75a780b4775702dc53aec15bc24c644d0799a6d8b6ed96caf6f9a2ba1878f213
PageCount 6
ParticipantIDs ieee_primary_6100896
PublicationCentury 2000
PublicationDate 2011-10
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10
PublicationDecade 2010
PublicationTitle 2011 11th IEEE-RAS International Conference on Humanoid Robots
PublicationTitleAbbrev Humanoids
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188926
ssj0000669175
Score 1.6783414
Snippet Bipedal humanoid robots are inherently unstable to external perturbations, especially when they are walking on uneven terrain in the presence of unforeseen...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Bipedal Omnidirectional Walking
Foot
Full Body Push Recovery
Humanoid robots
Legged locomotion
Online Learning
Reinforcement Learning
Robot sensing systems
Torso
Trajectory
Title Online learning of a full body push recovery controller for omnidirectional walking
URI https://ieeexplore.ieee.org/document/6100896
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELXanuDC0iJ2-cCRtImTeDkjqgqpCAkq9VZ5hYqSVG0iVL4e20nKIg7c4lwSW2PPm-eZNwBcUSxNwg0NsI6kDVC0PQdVJAKtuLWGWCoeu0Lh8T0eTZK7aTptgettLYzW2ief6b579Hf5Kpelo8oG2CnRMNwGbUJxVau15VOs62SNK3Rja6uU-W5ryEYEgYUlLiiz-MaexxTjpJZ7asaorh6OQjbw9Hk-V-tK4bP-6o_2K977DPfAuPnvKunktV8Woi8_fkk6_ndi-6D3VecHH7Ye7AC0dHYIdr9JFHbBY6VFCuvuEs8wN5BDR9pDkasNXJbrF-iiarslNrBOfF_oFbRgGOZv2bzymZ5whO984Zj5HpgMb59uRkHdiCGY2_CuCAxJOaGhSAhJSYiUTGOuZZQKiRJpAZUKCWMcKyqwVgxLbrBhHAkeUUINiuIj0MnyTB8DGAsUS6GMkMRiIcMp4iJRLsdVcxMSfgK6bnlmy0prY1avzOnfr8_ADmpy8qJz0ClWpb6wIKEQl946PgE7mLdu
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD-rFBxjf9uDRhd1ut-2ejQQViImQcCN9KhFZAmwM_nrbfeAjHrxt97LbZtr55uvMNwBcMSIN5oZ5RAfSBijanoMqEJ5W3FpDKBUPXaFwt0faA3w_jIYVcL2uhdFaZ8lnuuEes7t8lcjUUWVN4pRoYrIBNiOMcZRXa60ZFes849IZurG1VhZn_daQjQk8C0xcWGYRjj2RGSG4EHwqx6ioHw78uJkR6MlYLXKNz-K7PxqwZP6ntQu65Z_naSevjXQpGvLjl6jjf6e2B-pflX7wce3D9kFFTw_AzjeRwhp4ytVIYdFf4hkmBnLoaHsoErWCs3TxAl1cbTfFChap7xM9hxYOw-RtOs69ZkY5wnc-cdx8HQxat_2btle0YvDGNsBbeoZGnDJfYEoj6iMlo5BrGURCIiwtpFI-jWNOFBNEq5hIboiJORI8YJQZFISHoDpNpvoIwFCgUAplhKQWDRnOEBdYuSxXzY1P-TGoueUZzXK1jVGxMid_v74EW-1-tzPq3PUeTsE2KjP0gjNQXc5TfW4hw1JcZJbyCQp9urs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+11th+IEEE-RAS+International+Conference+on+Humanoid+Robots&rft.atitle=Online+learning+of+a+full+body+push+recovery+controller+for+omnidirectional+walking&rft.au=Seung-Joon+Yi&rft.au=Byoung-Tak+Zhang&rft.au=Hong%2C+Dennis&rft.au=Lee%2C+Daniel+D.&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781612848662&rft.issn=2164-0572&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FHumanoids.2011.6100896&rft.externalDocID=6100896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-0572&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-0572&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-0572&client=summon