Learning of Tool Affordances for autonomous tool manipulation

We present the concept of Tool Affordances to plan a strategy for target object manipulation by a tool via understanding of bi-directional association between Actions, Tools and Effects. Tool Affordances include the awareness within robot about the different kind of effects it can create in the envi...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE/SICE International Symposium on System Integration pp. 814 - 819
Main Authors Jain, R., Inamura, T.
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.12.2011
Subjects
Online AccessGet full text
ISBN9781457715235
1457715236
DOI10.1109/SII.2011.6147553

Cover

Abstract We present the concept of Tool Affordances to plan a strategy for target object manipulation by a tool via understanding of bi-directional association between Actions, Tools and Effects. Tool Affordances include the awareness within robot about the different kind of effects it can create in the environment using an action and a tool. Robot learns tool affordances by exploring the environment through its motor actions using different tools and learning their association with observed effects. The strength of our model is the robots ability of prediction and inference given some evidence. To deal with uncertainty, redundancy and irrelevant information Bayesian Network as the probabilistic model is chosen for implementation of our Tool Affordance model. We demonstrate a preliminary experiment where robot uses learnt Tool Affordances to correctly infer the most appropriate novel Action and Tool given the observed effects.
AbstractList We present the concept of Tool Affordances to plan a strategy for target object manipulation by a tool via understanding of bi-directional association between Actions, Tools and Effects. Tool Affordances include the awareness within robot about the different kind of effects it can create in the environment using an action and a tool. Robot learns tool affordances by exploring the environment through its motor actions using different tools and learning their association with observed effects. The strength of our model is the robots ability of prediction and inference given some evidence. To deal with uncertainty, redundancy and irrelevant information Bayesian Network as the probabilistic model is chosen for implementation of our Tool Affordance model. We demonstrate a preliminary experiment where robot uses learnt Tool Affordances to correctly infer the most appropriate novel Action and Tool given the observed effects.
Author Inamura, T.
Jain, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Jain
  fullname: Jain, R.
  email: jain@nii.ac.jp
  organization: Grad. Univ. for Adv. Studies, Japan
– sequence: 2
  givenname: T.
  surname: Inamura
  fullname: Inamura, T.
  email: inamura@nii.ac.jp
  organization: Grad. Univ. for Adv. Studies, Japan
BookMark eNpVT0tLxDAYjKigrr0LXvIHtuZLmuTLwcOy-CgUPLiel2yaSKRNlj4O_nsr7sW5zAwDw8wNuUg5eULugJUAzDy813XJGUCpoNJSijNSGI1QSa1Bco7n_7yQV6QYxy-2QCmjOF6Tx8bbIcX0SXOgu5w7ugkhD61Nzo90UdTOU065z_NIp9-8tyke585OMadbchlsN_rixCvy8fy0276um7eXertp1hGkmtbeCocamVm2Ollp5Iw7j8545yRYHYJAbSA4FI7ZFoM8hJazFvkhAAolVuT-rzd67_fHIfZ2-N6fTosfNvdL_Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SII.2011.6147553
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457715228
1457715228
9781457715242
1457715244
EndPage 819
ExternalDocumentID 6147553
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i156t-ea3c87809201c5478202ce8c9ecc51a7ff38791fc83c0ad8f5bfd20d82bf18363
IEDL.DBID RIE
ISBN 9781457715235
1457715236
IngestDate Wed Aug 27 03:58:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-ea3c87809201c5478202ce8c9ecc51a7ff38791fc83c0ad8f5bfd20d82bf18363
PageCount 6
ParticipantIDs ieee_primary_6147553
PublicationCentury 2000
PublicationDate 2011-12
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12
PublicationDecade 2010
PublicationTitle 2011 IEEE/SICE International Symposium on System Integration
PublicationTitleAbbrev SII
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669628
Score 1.5633736
Snippet We present the concept of Tool Affordances to plan a strategy for target object manipulation by a tool via understanding of bi-directional association between...
SourceID ieee
SourceType Publisher
StartPage 814
SubjectTerms Bayesian methods
Learning systems
Manipulators
Robot sensing systems
Shape
Silicon
Title Learning of Tool Affordances for autonomous tool manipulation
URI https://ieeexplore.ieee.org/document/6147553
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRbGnaNOnBg4hjEyaCG-w2ml8iyipbe_GvN0nbieLBW9pAyOMRvryX930P4IqLjDIqGdYR0zhJI4ulIhJH2nDjAhKhiCcnzx7TySJ5WLJlB653XBhjTCg-M0M_DG_5ulCVT5WNHJRwxuIudLlIa67WLp_ioDNLqQjcLca5g6U4bSWdmm_WPlOSbPQ8ndb6nc2aP5qrBGwZ78Os3VVdUvI2rEo5VJ-_BBv_u-0DGHyz-NDTDp8OoWPWfbhpBFVfUGHRvCje0a319e3e-VvkRiivSk90KKotKv28F8hom3wNYDG-n99NcNNCAb-6wKzEJo-V4IJkzlblpbsoocoIlTnPsSjn1saCZ5FVIlYk18IyaTUlWlBp3WFP4yPorYu1OQZkaKxz6bVm8iRRfpZxS5Xyty7jgsoT6HvTVx-1Ssaqsfr0799nsBeys6Ew5Bx65aYyFw7eS3kZ_PoFx4KgvA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MedCTyib-NgePdkvTpkkPHkSUTbchuMFuo_kloqzi2ot_vUnaThQP3tIGQh6P8OW9vO97ABeMp4QSQQMVUhXESWgCIbEIQqWZtgEJl9iRk8eTZDCL7-d03oLLNRdGa-2Lz3TPDf1bvspl6VJlfQsljNJoAzZpHMe0YmutMyoWPNOEcM_eooxZYIqSRtSp_qbNQyVO-0_DYaXgWa_6o72KR5e7HRg3-6qKSl57ZSF68vOXZON_N74L3W8eH3pcI9QetPSyA1e1pOozyg2a5vkbujauwt25f4XsCGVl4agOeblChZt3EhlNm68uzO5upzeDoG6iELzY0KwIdBZJzjhOra3SiXcRTKTmMrW-o2HGjIk4S0MjeSRxprihwiiCFSfC2OOeRPvQXuZLfQBIk0hlwqnNZHEs3Sxlhkjp7l3ahpWH0HGmL94rnYxFbfXR37_PYWswHY8Wo-Hk4Ri2fa7Wl4mcQLv4KPWpBftCnHkffwFpQqQJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE%2FSICE+International+Symposium+on+System+Integration&rft.atitle=Learning+of+Tool+Affordances+for+autonomous+tool+manipulation&rft.au=Jain%2C+R.&rft.au=Inamura%2C+T.&rft.date=2011-12-01&rft.pub=IEEE&rft.isbn=9781457715235&rft.spage=814&rft.epage=819&rft_id=info:doi/10.1109%2FSII.2011.6147553&rft.externalDocID=6147553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457715235/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457715235/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457715235/sc.gif&client=summon&freeimage=true