Evolutionary programming based recommendation system for online shopping

In this paper, we propose an interactive evolutionary programming based recommendation system for online shopping that estimates the human preference based on eye movement analysis. Given a set of images of different clothes, the eye movement patterns of the human subjects while looking at the cloth...

Full description

Saved in:
Bibliographic Details
Published in2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference pp. 1 - 4
Main Authors Jehan Jung, Matsuba, Yuka, Mallipeddi, Rammohan, Funaya, Hiroyuki, Ikeda, Kazushi, Minho Lee
Format Conference Proceeding
LanguageEnglish
Japanese
Published APSIPA 01.10.2013
Subjects
Online AccessGet full text
DOI10.1109/APSIPA.2013.6694236

Cover

Abstract In this paper, we propose an interactive evolutionary programming based recommendation system for online shopping that estimates the human preference based on eye movement analysis. Given a set of images of different clothes, the eye movement patterns of the human subjects while looking at the clothes they like differ from clothes they do not like. Therefore, in the proposed system, human preference is measured from the way the human subjects look at the images of different clothes. In other words, the human preference can be measured by using the fixation count and the fixation length using an eye tracking system. Based on the level of human preference, the evolutionary programming suggests new clothes that close the human preference by operations such as selection and mutation. The proposed recommendation is tested with several human subjects and the experimental results are demonstrated.
AbstractList In this paper, we propose an interactive evolutionary programming based recommendation system for online shopping that estimates the human preference based on eye movement analysis. Given a set of images of different clothes, the eye movement patterns of the human subjects while looking at the clothes they like differ from clothes they do not like. Therefore, in the proposed system, human preference is measured from the way the human subjects look at the images of different clothes. In other words, the human preference can be measured by using the fixation count and the fixation length using an eye tracking system. Based on the level of human preference, the evolutionary programming suggests new clothes that close the human preference by operations such as selection and mutation. The proposed recommendation is tested with several human subjects and the experimental results are demonstrated.
Author Mallipeddi, Rammohan
Ikeda, Kazushi
Jehan Jung
Funaya, Hiroyuki
Matsuba, Yuka
Minho Lee
Author_xml – sequence: 1
  surname: Jehan Jung
  fullname: Jehan Jung
  email: crossjjh@knu.ac.kr
  organization: Dept. of Sensor Eng., Kyungpook Nat. Univ., Taegu, South Korea
– sequence: 2
  givenname: Yuka
  surname: Matsuba
  fullname: Matsuba, Yuka
  email: yuka-m@is.naist.jp
  organization: Grad. Sch. of Inf. Sci., Nara Inst. of Sci. & Technol., Nara, Japan
– sequence: 3
  givenname: Rammohan
  surname: Mallipeddi
  fullname: Mallipeddi, Rammohan
  email: mallipeddi@knu.ac.kr
  organization: Dept. of Sensor Eng., Kyungpook Nat. Univ., Taegu, South Korea
– sequence: 4
  givenname: Hiroyuki
  surname: Funaya
  fullname: Funaya, Hiroyuki
  email: hiroyuki-fn@is.naist.jp
  organization: Grad. Sch. of Inf. Sci., Nara Inst. of Sci. & Technol., Nara, Japan
– sequence: 5
  givenname: Kazushi
  surname: Ikeda
  fullname: Ikeda, Kazushi
  email: kazushi@is.naist.jp
  organization: Grad. Sch. of Inf. Sci., Nara Inst. of Sci. & Technol., Nara, Japan
– sequence: 6
  surname: Minho Lee
  fullname: Minho Lee
  email: mholee@knu.ac.kr
  organization: Dept. of Sensor Eng., Kyungpook Nat. Univ., Taegu, South Korea
BookMark eNotj8tKAzEYRiPoQmufoJu8wIy5TWayHEq1hUIL6rrk8qcGJsmQGYW-vRW7OpvD4fue0H3KCRBaUVJTStRLf3zfHfuaEcprKZVgXN6hpWo71UlFCJFEPKLt5icP33PISZcLHks-Fx1jSGds9AQOF7A5RkhO_zl4ukwzROxzwTkNIQGevvI4Xv1n9OD1MMHyxgX6fN18rLfV_vC2W_f7KtBGzhU0yrXGM2sd80ZJsN4Z76gFzxshRQNGUUM73hqttOOdoIJpMFZ5IlvL-AKt_rsBAE5jCfE6_HT7x38Bk9xNBA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APSIPA.2013.6694236
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 9789869000604
9869000606
EndPage 4
ExternalDocumentID 6694236
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i156t-e59d7bf2ccd2fb96ecfdbfd1cef354645eb91b1837ba9ad384142aebc9f067c23
IEDL.DBID RIE
IngestDate Thu Jun 29 18:35:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-e59d7bf2ccd2fb96ecfdbfd1cef354645eb91b1837ba9ad384142aebc9f067c23
PageCount 4
ParticipantIDs ieee_primary_6694236
PublicationCentury 2000
PublicationDate 2013-10
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10
PublicationDecade 2010
PublicationTitle 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
PublicationTitleAbbrev APSIPA
PublicationYear 2013
Publisher APSIPA
Publisher_xml – name: APSIPA
Score 1.5860187
Snippet In this paper, we propose an interactive evolutionary programming based recommendation system for online shopping that estimates the human preference based on...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Evolutionary computation
Genetic algorithms
Length measurement
Programming
Sociology
Statistics
Visualization
Title Evolutionary programming based recommendation system for online shopping
URI https://ieeexplore.ieee.org/document/6694236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3annryoxW_ycGju-1uNtnmWKSlCpWCFnormXyoSFupW0F_vclmrSgevC1LSJZMwsvbvHkDcGGRSUTFIsZ7GGWYmMjR5jxCk1vJhbI28_nO41s-mmY3MzarweU2F8YYU4rPTOwfy7t8vVIb_6usw7lw6M_rUM97PORqVUZCSVd0-pO760nfq7VoXLX8UTKlRIzhDoy_xgpCked4U2CsPn7ZMP73Y3ah_Z2bRyZb1NmDmlnuQ9OfGYPlcgtGg7dqPcn1O6kEWAvXmHjI0sRz4IXrPFRTIsHLmbjDKwm2GeT1ceVdGx7aMB0O7q9GUVUwIXpyNKyIDBM6R5sqpVOLghtlNVqdKGMp81eYBkWCbhPnKIXUtJclWSoNKmEdaKmUHkBjuVqaQyAy0SpBKli3qxyDzqVUzIpUouOTNKP8CFp-SuYvwRNjXs3G8d-vT6DpwxJEcKfQKNYbc-bAvMDzMoqfQB2lCw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT8IwFG0QH-TJDzB-2wcf3WBb29FHYiBDgZAICW-ktx9qDGAQTPTX264To_HBt2Vp2qW3zelZzz0XoSsDVABIGlDWhIBApANLm9MAdGoE49IY4vKd-wOWjcnthE5K6HqTC6O1zsVnOnSP-V2-Wsi1-1VWZ4xb9GdbaJsSQqjP1iqshKIGr7eG991hy-m1krBo-6NoSo4ZnV3U_xrNS0Wew_UKQvnxy4jxv5-zh2rf2Xl4uMGdfVTS8wNUcadGb7pcRVn7rVhRYvmOCwnWzDbGDrQUdix4Zjv39ZSwd3PG9viKvXEGfn1cON-Ghxoad9qjmywoSiYET5aIrQJNuUrBxFKq2ABnWhoFRkVSm4S6S0wNPAK7jVMQXKikSSISCw2SGwtbMk4OUXm-mOsjhEWkZAQJp42GtBw6FUJSw2MBllEmJGHHqOqmZPriXTGmxWyc_P36Eu1ko35v2usO7k5RxYXIS-LOUHm1XOtzC-0ruMgj-gkQo6hY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+Asia-Pacific+Signal+and+Information+Processing+Association+Annual+Summit+and+Conference&rft.atitle=Evolutionary+programming+based+recommendation+system+for+online+shopping&rft.au=Jehan+Jung&rft.au=Matsuba%2C+Yuka&rft.au=Mallipeddi%2C+Rammohan&rft.au=Funaya%2C+Hiroyuki&rft.date=2013-10-01&rft.pub=APSIPA&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FAPSIPA.2013.6694236&rft.externalDocID=6694236