Automatic Brain Tumor Segmentation from MR Images via a Multimodal Sparse Coding Based Probabilistic Model

Accurate segmentation of brain tumor from MR image is crucial for the diagnosis and treatment of brain cancer. We propose a novel automated brain tumor segmentation method based on a probabilistic model combining sparse coding and Markov random field (MRF). We formulate the brain tumor segmentation...

Full description

Saved in:
Bibliographic Details
Published in2015 International Workshop on Pattern Recognition in NeuroImaging pp. 41 - 44
Main Authors Yuhong Li, Qi Dou, Jinze Yu, Fucang Jia, Jing Qin, Pheng-Ann Heng
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text
DOI10.1109/PRNI.2015.18

Cover

Abstract Accurate segmentation of brain tumor from MR image is crucial for the diagnosis and treatment of brain cancer. We propose a novel automated brain tumor segmentation method based on a probabilistic model combining sparse coding and Markov random field (MRF). We formulate the brain tumor segmentation task as a pixel-wise labeling problem with regard to three classes: tumor, edema and healthy issue. For each class, dictionary learning is performed independently on multi-modality gray scale patches. Sparse representation is then extracted based on a joint dictionary which is constructed by combing the three independent dictionaries. Finally, we build the probabilistic model aiming to estimate maximum a posterior (MAP) probability by introducing the sparse representation into likelihood probability and prior probability using the Markov random field (MRF) assumption. Compared with traditional methods, which employed hand-crafted low level features to construct the probabilistic model, our model can better represent the characteristics of a pixel and its relation with neighbors based on the sparse coefficients obtained from the learned dictionary. We validated our method on the MICAAI 2012 BRATS challenge brain MRI dataset and achieved comparable or better results compared with state-of the-art methods.
AbstractList Accurate segmentation of brain tumor from MR image is crucial for the diagnosis and treatment of brain cancer. We propose a novel automated brain tumor segmentation method based on a probabilistic model combining sparse coding and Markov random field (MRF). We formulate the brain tumor segmentation task as a pixel-wise labeling problem with regard to three classes: tumor, edema and healthy issue. For each class, dictionary learning is performed independently on multi-modality gray scale patches. Sparse representation is then extracted based on a joint dictionary which is constructed by combing the three independent dictionaries. Finally, we build the probabilistic model aiming to estimate maximum a posterior (MAP) probability by introducing the sparse representation into likelihood probability and prior probability using the Markov random field (MRF) assumption. Compared with traditional methods, which employed hand-crafted low level features to construct the probabilistic model, our model can better represent the characteristics of a pixel and its relation with neighbors based on the sparse coefficients obtained from the learned dictionary. We validated our method on the MICAAI 2012 BRATS challenge brain MRI dataset and achieved comparable or better results compared with state-of the-art methods.
Author Pheng-Ann Heng
Yuhong Li
Jing Qin
Fucang Jia
Qi Dou
Jinze Yu
Author_xml – sequence: 1
  surname: Yuhong Li
  fullname: Yuhong Li
  organization: Shenzhen Inst. of Adv. Technol., Shenzhen, China
– sequence: 2
  surname: Qi Dou
  fullname: Qi Dou
  organization: Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 3
  surname: Jinze Yu
  fullname: Jinze Yu
  email: jzyu@cse.cuhk.edu.hk
  organization: Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 4
  surname: Fucang Jia
  fullname: Fucang Jia
  organization: Shenzhen Inst. of Adv. Technol., Shenzhen, China
– sequence: 5
  surname: Jing Qin
  fullname: Jing Qin
  organization: Nat.-Regional Key Technol. Eng. Lab. for Med. Ultrasound, Shenzhen Univ., Shenzhen, China
– sequence: 6
  surname: Pheng-Ann Heng
  fullname: Pheng-Ann Heng
  organization: Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China
BookMark eNotzMtKAzEUgOEICmrtzp2bvEBr7plZtsVLodXS1nU5mZwpkclEkqng26vo6od_8V2T8z71SMgtZ1POWX2_2b4sp4JxPeXVGRnXtuLKWGm50uKSjEsJjgljjWZKXpH32WlIEYbQ0HmG0NP9KaZMd3iM2A8_P_W0zSnS9ZYuIxyx0M8AFOj61A0hJg8d3X1ALkgXyYf-SOdQ0NNNTg5c6EL5pdfJY3dDLlroCo7_OyJvjw_7xfNk9fq0XMxWk8C1GSa2VhakcxacaAAMx4ZZpUTtGSotjfTcs9rrptFSOatMBV7JRkGLrRGVkSNy9-cGRDx85BAhfx2ssKxSUn4DZR5YFQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PRNI.2015.18
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467371452
1467371459
EndPage 44
ExternalDocumentID 7270843
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i156t-7947a3bb7ab2caa61ec074429d0e45363d1d09d5cc534b7468ad43c4afef62863
IEDL.DBID RIE
IngestDate Wed Dec 20 05:18:43 EST 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-7947a3bb7ab2caa61ec074429d0e45363d1d09d5cc534b7468ad43c4afef62863
PageCount 4
ParticipantIDs ieee_primary_7270843
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Workshop on Pattern Recognition in NeuroImaging
PublicationTitleAbbrev PRNI
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026765043
Score 1.6229302
Snippet Accurate segmentation of brain tumor from MR image is crucial for the diagnosis and treatment of brain cancer. We propose a novel automated brain tumor...
SourceID ieee
SourceType Publisher
StartPage 41
SubjectTerms Brain modeling
brain tumor segmentation
Dictionaries
Image segmentation
Joints
maximum a posterior
multi-modality
Probabilistic logic
probabilistic model
sparse coding
Training
Tumors
Title Automatic Brain Tumor Segmentation from MR Images via a Multimodal Sparse Coding Based Probabilistic Model
URI https://ieeexplore.ieee.org/document/7270843
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0AJ09qwPiBZg4ebWnZ3ZYehUjABEL4SLiR_apBaUuw9eCvd3cLaIwHb80eupudbd9MO-89hO4p8_VJ8ITO3HzukEhIJ4qp53hchkQjaOxb_5TROBgsyPOSLivo4ciFUUrZ5jPlmkv7L19mojCfyloaa70OwVVUDcOo5Godzk47CAMjxnXsbY9ak-l4aHq3qGscPX54p1jo6J-i0WHSsmPkzS1y7orPX3qM_13VGWp8k_RgcoSfc1RRaR29PhZ5ZlVYoWvMH2BeJNkOZuol2ZOMUjCMEhhNYZjod8k7fKwZMLBE3CSTbAOzrS52FfQyc1_oapiTZiJutXiNrDMYA7VNAy36T_PewNnbKThrXaTljn7yQoY5DxlvC8YCXwmdP2g8kp4iFAdY-tKLJBWCYsJ1pDpMEiwIi1VsCKz4AtXSLFWXCIiuG3lHUY49TnzOopBJReKA6fwtkJRdobrZp9W2VMxY7bfo-u_hG3RiwlQ2YDVRLd8V6lZDfc7vbIy_AMSdqp4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvSkBozf7sGjhZbdbelRiASUEsJHwo3sVw1KW4KtB3-9sy2gMR68NXvobna2fTPtvPcQumPcgZNgS8jcHGFRXyrLD5lt2UJ5FBA0dHL_lGDgdqf0acZmJXS_48JorfPmM10zl_m_fJXIzHwqqwPW2k1K9tA-g6rCK9ha29PTcD3XyHHtutv9-nA06JnuLVYznh4_3FNy8OgcoWA7bdEz8lbLUlGTn78UGf-7rmNU_abp4eEOgE5QSccV9PqQpUmuw4pbxv4BT7IoWeOxfok2NKMYG04JDka4F8Hb5B1_LDjmOKfiRoniSzxeQbmrcTsx98UtADplJhK5Gq8RdsbGQm1ZRdPO46TdtTaGCtYCyrTUgmfP40QIj4uG5Nx1tIQMAhBJ2Zoy4hLlKNtXTEpGqIBYNbmiRFIe6tBQWMkpKsdJrM8QplA5iqZmgtiCOoL7Hleahi6HDM5VjJ-jitmn-arQzJhvtuji7-FbdNCdBP15vzd4vkSHJmRFO9YVKqfrTF8D8KfiJo_3F-gGre8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Workshop+on+Pattern+Recognition+in+NeuroImaging&rft.atitle=Automatic+Brain+Tumor+Segmentation+from+MR+Images+via+a+Multimodal+Sparse+Coding+Based+Probabilistic+Model&rft.au=Yuhong+Li&rft.au=Qi+Dou&rft.au=Jinze+Yu&rft.au=Fucang+Jia&rft.date=2015-06-01&rft.pub=IEEE&rft.spage=41&rft.epage=44&rft_id=info:doi/10.1109%2FPRNI.2015.18&rft.externalDocID=7270843