A neural network based channel estimation scheme for OFDM system

Recent wireless standards prefer orthogonal frequency division multiplexing (OFDM) along with multiple input multiple output (MIMO) to offer high spectral efficiency services for any time anywhere environment. The full advantages of MIMO-OFDM is accessible only when there exist perfect channel infor...

Full description

Saved in:
Bibliographic Details
Published in2016 International Conference on Communication and Signal Processing (ICCSP) pp. 0438 - 0441
Main Authors Hiray, Kalpesh, Babu, K. Vinoth
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.04.2016
Subjects
Online AccessGet full text
DOI10.1109/ICCSP.2016.7754174

Cover

Abstract Recent wireless standards prefer orthogonal frequency division multiplexing (OFDM) along with multiple input multiple output (MIMO) to offer high spectral efficiency services for any time anywhere environment. The full advantages of MIMO-OFDM is accessible only when there exist perfect channel information. Improper channel estimation leads to poor quality. In this work, we have developed a multi layered perceptron (MLP) based neural network (NN) which is trained with back propagation (BP) algorithm to estimate the channel characteristics of OFDM system. Monte-Carlo simulations are used to evaluate the performance of the proposed scheme with the conventional Least Mean Square (LMS) algorithm. The simulation results demonstrate that proposed schemes offers superior performance over the conventional LMS scheme under noisy environment.
AbstractList Recent wireless standards prefer orthogonal frequency division multiplexing (OFDM) along with multiple input multiple output (MIMO) to offer high spectral efficiency services for any time anywhere environment. The full advantages of MIMO-OFDM is accessible only when there exist perfect channel information. Improper channel estimation leads to poor quality. In this work, we have developed a multi layered perceptron (MLP) based neural network (NN) which is trained with back propagation (BP) algorithm to estimate the channel characteristics of OFDM system. Monte-Carlo simulations are used to evaluate the performance of the proposed scheme with the conventional Least Mean Square (LMS) algorithm. The simulation results demonstrate that proposed schemes offers superior performance over the conventional LMS scheme under noisy environment.
Author Babu, K. Vinoth
Hiray, Kalpesh
Author_xml – sequence: 1
  givenname: Kalpesh
  surname: Hiray
  fullname: Hiray, Kalpesh
  email: kalpeshhiray91@gmail.com
  organization: Commun. Eng., Vellore Inst. of Technol., Vellore, India
– sequence: 2
  givenname: K. Vinoth
  surname: Babu
  fullname: Babu, K. Vinoth
  email: vinothbab@gmail.com
  organization: Sch. of Electron. Eng., VIT Univ., Vellore, India
BookMark eNotj0FOwzAQAI1ED1D6Abj4AwleJ87GN6pAS6WiIhXO1SZeqxGJg-Ig1N9TiZ7mNpq5FddhCCzEPagUQNnHTVXt31OtoEgRTQ6YX4mFxRKMskpltrA34mkpA_-M1J0x_Q7jl6wpspPNkULgTnKc2p6mdggyNkfuWfphlLvV85uMpzhxfydmnrrIiwvn4nP18lG9JtvdelMtt0kLppgSo5CInWFdgudGE1s2DrRzqGrUWiH4jE1jHRYEkHld-lrnaEsqKGfM5uLh39sy8-F7PFeNp8PlK_sDFgZG1Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSP.2016.7754174
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509003969
9781509003952
1509003959
1509003967
EndPage 0441
ExternalDocumentID 7754174
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i156t-507aaed5e281fec2ae9e5d12dd70b722071f3e5c9d76a113f28fb24798a6a4e73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:59 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-507aaed5e281fec2ae9e5d12dd70b722071f3e5c9d76a113f28fb24798a6a4e73
PageCount 4
ParticipantIDs ieee_primary_7754174
PublicationCentury 2000
PublicationDate 2016-04
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04
PublicationDecade 2010
PublicationTitle 2016 International Conference on Communication and Signal Processing (ICCSP)
PublicationTitleAbbrev ICCSP
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6145631
Snippet Recent wireless standards prefer orthogonal frequency division multiplexing (OFDM) along with multiple input multiple output (MIMO) to offer high spectral...
SourceID ieee
SourceType Publisher
StartPage 0438
SubjectTerms Algorithm design and analysis
Artificial neural networks
Back propagation (BP)
Channel estimation
least mean square (LMS)
MIMO
multi layered perceptron (MLP)
neural network (NN)
OFDM
orthogonal frequency division multiplexing OFDM
Signal processing algorithms
Title A neural network based channel estimation scheme for OFDM system
URI https://ieeexplore.ieee.org/document/7754174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxFAxtT55UWvGbHDyabTcfm92bUi1VqBa00Ft52byAWLciuxd_vcluW1E8eEoIgSQkMO8lMxNCLvwhSME6x1JhDZOJEwwMB5Zz6zx62KCdDGyLh2Q8k_dzNW-Ry60WBhFr8hlGoVq_5dtVXoWrsn5wa_MRdJu0dZo0Wq2NDmaQ9e-Gw6dpIGsl0brjjx9TasAY7ZLJZqiGJ_IaVaWJ8s9fLoz_ncse6X1L8-h0Czr7pIVFl1xd0-BLCUtf1KxuGsDJ0qDqLXBJg5NGI1GkPpnFN6Q-VKWPo5sJbZyce2Q2un0ejtn6awT24hOukvkoDgCtQp7GDnMOmKGyMbdWD4zm3AcOTqDKM6sTiGPheOoMlzpLIQGJWhyQTrEq8JBQEFo7LaxWoKWT2vis1fJcZVINAEAdkW5Y_eK9cb9YrBd-_HfzCdkJO9BwW05Jp_yo8MzDdmnO6_36Arbxmgk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHN6Br1-2mQQkoIImQcCNv62tixGHMuPjX226A0Xjw1KZp0jZt8r3Xft9XgCt7CCLUxnhRoBNPhCbwMOHopVwbix7aaScd22IYdifiYSqnFbjeaGGIqCCfke-qxVu-XqRLd1XWcG5tNoLegm0phJClWmuthGnGjV67_TxydK3QX3X98WdKARmdPRisByuZIq_-Mk_89POXD-N_Z7MP9W9xHhttYOcAKpTV4OaWOWdKnNui4HUzB0-aOV1vRnPmvDRKkSKz6Sy9EbPBKnvq3A1Y6eVch0nnftzueqvPEbwXm3Llno3jEElL4lHLUMqRYpK6xbVWzURxbkMHE5BMY61CbLUCwyOTcKHiCEMUpIJDqGaLjI6AYaCUUYFWEpUwQiU2b9U8lbGQTUSUx1Bzq5-9l_4Xs9XCT_5uvoSd7njQn_V7w8dT2HW7UTJdzqCafyzp3IJ4nlwUe_cF-VydVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Communication+and+Signal+Processing+%28ICCSP%29&rft.atitle=A+neural+network+based+channel+estimation+scheme+for+OFDM+system&rft.au=Hiray%2C+Kalpesh&rft.au=Babu%2C+K.+Vinoth&rft.date=2016-04-01&rft.pub=IEEE&rft.spage=0438&rft.epage=0441&rft_id=info:doi/10.1109%2FICCSP.2016.7754174&rft.externalDocID=7754174