A neural network based channel estimation scheme for OFDM system
Recent wireless standards prefer orthogonal frequency division multiplexing (OFDM) along with multiple input multiple output (MIMO) to offer high spectral efficiency services for any time anywhere environment. The full advantages of MIMO-OFDM is accessible only when there exist perfect channel infor...
Saved in:
| Published in | 2016 International Conference on Communication and Signal Processing (ICCSP) pp. 0438 - 0441 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English Japanese |
| Published |
IEEE
01.04.2016
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ICCSP.2016.7754174 |
Cover
| Abstract | Recent wireless standards prefer orthogonal frequency division multiplexing (OFDM) along with multiple input multiple output (MIMO) to offer high spectral efficiency services for any time anywhere environment. The full advantages of MIMO-OFDM is accessible only when there exist perfect channel information. Improper channel estimation leads to poor quality. In this work, we have developed a multi layered perceptron (MLP) based neural network (NN) which is trained with back propagation (BP) algorithm to estimate the channel characteristics of OFDM system. Monte-Carlo simulations are used to evaluate the performance of the proposed scheme with the conventional Least Mean Square (LMS) algorithm. The simulation results demonstrate that proposed schemes offers superior performance over the conventional LMS scheme under noisy environment. |
|---|---|
| AbstractList | Recent wireless standards prefer orthogonal frequency division multiplexing (OFDM) along with multiple input multiple output (MIMO) to offer high spectral efficiency services for any time anywhere environment. The full advantages of MIMO-OFDM is accessible only when there exist perfect channel information. Improper channel estimation leads to poor quality. In this work, we have developed a multi layered perceptron (MLP) based neural network (NN) which is trained with back propagation (BP) algorithm to estimate the channel characteristics of OFDM system. Monte-Carlo simulations are used to evaluate the performance of the proposed scheme with the conventional Least Mean Square (LMS) algorithm. The simulation results demonstrate that proposed schemes offers superior performance over the conventional LMS scheme under noisy environment. |
| Author | Babu, K. Vinoth Hiray, Kalpesh |
| Author_xml | – sequence: 1 givenname: Kalpesh surname: Hiray fullname: Hiray, Kalpesh email: kalpeshhiray91@gmail.com organization: Commun. Eng., Vellore Inst. of Technol., Vellore, India – sequence: 2 givenname: K. Vinoth surname: Babu fullname: Babu, K. Vinoth email: vinothbab@gmail.com organization: Sch. of Electron. Eng., VIT Univ., Vellore, India |
| BookMark | eNotj0FOwzAQAI1ED1D6Abj4AwleJ87GN6pAS6WiIhXO1SZeqxGJg-Ig1N9TiZ7mNpq5FddhCCzEPagUQNnHTVXt31OtoEgRTQ6YX4mFxRKMskpltrA34mkpA_-M1J0x_Q7jl6wpspPNkULgTnKc2p6mdggyNkfuWfphlLvV85uMpzhxfydmnrrIiwvn4nP18lG9JtvdelMtt0kLppgSo5CInWFdgudGE1s2DrRzqGrUWiH4jE1jHRYEkHld-lrnaEsqKGfM5uLh39sy8-F7PFeNp8PlK_sDFgZG1Q |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCSP.2016.7754174 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781509003969 9781509003952 1509003959 1509003967 |
| EndPage | 0441 |
| ExternalDocumentID | 7754174 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i156t-507aaed5e281fec2ae9e5d12dd70b722071f3e5c9d76a113f28fb24798a6a4e73 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:59 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i156t-507aaed5e281fec2ae9e5d12dd70b722071f3e5c9d76a113f28fb24798a6a4e73 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_7754174 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04 |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 International Conference on Communication and Signal Processing (ICCSP) |
| PublicationTitleAbbrev | ICCSP |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6145631 |
| Snippet | Recent wireless standards prefer orthogonal frequency division multiplexing (OFDM) along with multiple input multiple output (MIMO) to offer high spectral... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 0438 |
| SubjectTerms | Algorithm design and analysis Artificial neural networks Back propagation (BP) Channel estimation least mean square (LMS) MIMO multi layered perceptron (MLP) neural network (NN) OFDM orthogonal frequency division multiplexing OFDM Signal processing algorithms |
| Title | A neural network based channel estimation scheme for OFDM system |
| URI | https://ieeexplore.ieee.org/document/7754174 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxFAxtT55UWvGbHDyabTcfm92bUi1VqBa00Ft52byAWLciuxd_vcluW1E8eEoIgSQkMO8lMxNCLvwhSME6x1JhDZOJEwwMB5Zz6zx62KCdDGyLh2Q8k_dzNW-Ry60WBhFr8hlGoVq_5dtVXoWrsn5wa_MRdJu0dZo0Wq2NDmaQ9e-Gw6dpIGsl0brjjx9TasAY7ZLJZqiGJ_IaVaWJ8s9fLoz_ncse6X1L8-h0Czr7pIVFl1xd0-BLCUtf1KxuGsDJ0qDqLXBJg5NGI1GkPpnFN6Q-VKWPo5sJbZyce2Q2un0ejtn6awT24hOukvkoDgCtQp7GDnMOmKGyMbdWD4zm3AcOTqDKM6sTiGPheOoMlzpLIQGJWhyQTrEq8JBQEFo7LaxWoKWT2vis1fJcZVINAEAdkW5Y_eK9cb9YrBd-_HfzCdkJO9BwW05Jp_yo8MzDdmnO6_36Arbxmgk |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOhJDRh_24NHN6Br1-2mQQkoIImQcCNv62tixGHMuPjX226A0Xjw1KZp0jZt8r3Xft9XgCt7CCLUxnhRoBNPhCbwMOHopVwbix7aaScd22IYdifiYSqnFbjeaGGIqCCfke-qxVu-XqRLd1XWcG5tNoLegm0phJClWmuthGnGjV67_TxydK3QX3X98WdKARmdPRisByuZIq_-Mk_89POXD-N_Z7MP9W9xHhttYOcAKpTV4OaWOWdKnNui4HUzB0-aOV1vRnPmvDRKkSKz6Sy9EbPBKnvq3A1Y6eVch0nnftzueqvPEbwXm3Llno3jEElL4lHLUMqRYpK6xbVWzURxbkMHE5BMY61CbLUCwyOTcKHiCEMUpIJDqGaLjI6AYaCUUYFWEpUwQiU2b9U8lbGQTUSUx1Bzq5-9l_4Xs9XCT_5uvoSd7njQn_V7w8dT2HW7UTJdzqCafyzp3IJ4nlwUe_cF-VydVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+International+Conference+on+Communication+and+Signal+Processing+%28ICCSP%29&rft.atitle=A+neural+network+based+channel+estimation+scheme+for+OFDM+system&rft.au=Hiray%2C+Kalpesh&rft.au=Babu%2C+K.+Vinoth&rft.date=2016-04-01&rft.pub=IEEE&rft.spage=0438&rft.epage=0441&rft_id=info:doi/10.1109%2FICCSP.2016.7754174&rft.externalDocID=7754174 |