Near-Optimal Sparse Recovery in the L1 Norm

We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a high-dimensional vector xisinRopf n from its lower-dimensional sketch AxisinRopf m . Specifically, we focus on the sparse recovery problem in the L 1 norm: for a parameter k, given the sketch Ax, comp...

Full description

Saved in:
Bibliographic Details
Published in2008 49th Annual IEEE Symposium on Foundations of Computer Science pp. 199 - 207
Main Authors Indyk, P., Ruzic, M.
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 01.10.2008
Subjects
Online AccessGet full text
ISBN0769534368
9780769534367
ISSN0272-5428
DOI10.1109/FOCS.2008.82

Cover

Abstract We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a high-dimensional vector xisinRopf n from its lower-dimensional sketch AxisinRopf m . Specifically, we focus on the sparse recovery problem in the L 1 norm: for a parameter k, given the sketch Ax, compute an approximation xcirc of x such that the L 1 approximation error parx-xcircpar 1 is close to min x' parx-x'par 1 , where x' ranges over all vectors with at most k terms. The sparse recovery problem has been subject to extensive research over the last few years. Many solutions to this problem have been discovered, achieving different trade-offs between various attributes, such as the sketch length, encoding and recovery times. In this paper we provide a sparse recovery scheme which achieves close to optimal performance on virtually all attributes (see Figure 1). In particular, this is the first recovery scheme that guarantees O(k log(n/k)) sketch length, and near-linear O(n log (n/k)) recovery time simultaneously. It also features low encoding and update times, and is noise-resilient.
AbstractList We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a high-dimensional vector xisinRopf n from its lower-dimensional sketch AxisinRopf m . Specifically, we focus on the sparse recovery problem in the L 1 norm: for a parameter k, given the sketch Ax, compute an approximation xcirc of x such that the L 1 approximation error parx-xcircpar 1 is close to min x' parx-x'par 1 , where x' ranges over all vectors with at most k terms. The sparse recovery problem has been subject to extensive research over the last few years. Many solutions to this problem have been discovered, achieving different trade-offs between various attributes, such as the sketch length, encoding and recovery times. In this paper we provide a sparse recovery scheme which achieves close to optimal performance on virtually all attributes (see Figure 1). In particular, this is the first recovery scheme that guarantees O(k log(n/k)) sketch length, and near-linear O(n log (n/k)) recovery time simultaneously. It also features low encoding and update times, and is noise-resilient.
Author Indyk, P.
Ruzic, M.
Author_xml – sequence: 1
  givenname: P.
  surname: Indyk
  fullname: Indyk, P.
– sequence: 2
  givenname: M.
  surname: Ruzic
  fullname: Ruzic, M.
  organization: ITU Copenhagen, Copenhagen
BookMark eNotzktLw0AUQOEBK9jXzp2b2cvEO5N53FlKsFUIDbS6LpPkBiNtEiZB6L-3oquzO3wLNuv6jhi7l5BICf5pU2SHRAFgguqGLcBZb1KdWpyxOSinhNEK79h6HL8AQHrrwPo5e9xRiKIYpvYcTvwwhDgS31PVf1O88Lbj0yfxXPJdH88rdtuE00jr_y7Zx-blPXsVebF9y55z0UpjJ6F-PRik1la71IUrw1RovHIIWEmoqVZYOm-xclRRQAtU-rouoZGN9nW6ZA9_35aIjkO80uLlqK0Hb3T6A9kvQNw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/FOCS.2008.82
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EndPage 207
ExternalDocumentID 4690954
Genre orig-research
GroupedDBID -~X
23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACNCT
ADZIZ
AFFNX
AI.
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
VH1
ID FETCH-LOGICAL-i156t-211098a14464737a5345c85927808c10ded28b7968c7ecea860eb9ddb0f1f49d3
IEDL.DBID RIE
ISBN 0769534368
9780769534367
ISSN 0272-5428
IngestDate Wed Aug 27 02:07:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i156t-211098a14464737a5345c85927808c10ded28b7968c7ecea860eb9ddb0f1f49d3
PageCount 9
ParticipantIDs ieee_primary_4690954
PublicationCentury 2000
PublicationDate 2008-10
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10
PublicationDecade 2000
PublicationTitle 2008 49th Annual IEEE Symposium on Foundations of Computer Science
PublicationTitleAbbrev FOCS
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967069
ssj0040503
Score 1.6731846
Snippet We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a high-dimensional vector xisinRopf n from its...
SourceID ieee
SourceType Publisher
StartPage 199
SubjectTerms Analog computers
Approximation error
Compressed sensing
Computer errors
Computer science
Data acquisition
Encoding
expanders
Hardware
l1 norm
Linearity
sparse recovery
streaming algorithms
Vectors
Title Near-Optimal Sparse Recovery in the L1 Norm
URI https://ieeexplore.ieee.org/document/4690954
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ72ggPGdPXi00G13u7tnIiFGwARJuJF9kRC1EiwH_fXu9kViPHhrmx7a2cy3883OfANwt44J8S2fgdTOyQlWOJBWxgGWXDksZIJZf6I7mSbjBXlc0mUD7uteGGttXnxm-_4yP8s3H3rvU2UDT-UEJU1oMp4UvVqHfIpIWOiHZRcoTLzOSZ5fYV7rP-IFZRc09pLrpfJOdc_qingxGM2G86LEMtfmO0xcyTecURsm1acWdSav_X2m-vr7l4rjf__lBHqH1j70XG9ap9CwaQfa1WwHVLp6B44ntZ7rZxccFspdMHPw8i7f0Hzr2LBFnrk6R_hCmxS5d9ETRlMXAfdgMXp4GY6DcsxCsHHkLQs8BRRcemJIWMykMwnVnIrIWYi7FTTWRFwxkXDNrLaSJ6FVwhgVrvGaCBOfQSv9SO05IGxD60I0h5naxTVUKmOwkFQnimgamuQCut4Sq22hpLEqjXD59-MrOIoq9Vl8Da1st7c3LgTI1G2-9j_rzKcW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtQLChjf7sGjhT52u90zkaBSMAESbmRfJEYtBMtBf727fZEYD97apod22vl2vtmZbwDulgHGtuXT4dI4OfaE53DNA8fjkTBYSBnVdkc3HoWDGX6ak3kN7qteGK11VnymO_Yw28tXK7m1qbKupXKM4D3YJxhjkndr7TIqLKSuHZed4zC2SidZhoVatX8_ykk7I4EVXS-0d8pzWtXEs25_3JvkRZaZOt9u5kq25PQbEJcPm1eavHW2qejI7186jv99m2No75r70Eu1bJ1ATSdNaJTTHVDh7E04iitF188WGDTkG2dsAOaDv6PJ2vBhjSx3Na7whV4TZO5FQw-NTAzchln_YdobOMWgBefV0LfUsSSQRdxSQ0wDyo1JiIwI842FIvMNlVZ-JCgLI0m11DwKXS2YUsJdekvMVHAK9WSV6DNAnna1CdIMakoT2RAulPIYJzIUWBJXhefQspZYrHMtjUVhhIu_L9_CwWAaDxfDx9HzJRz6pRatdwX1dLPV1yYgSMVN9h_8AOa4qmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+49th+Annual+IEEE+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Near-Optimal+Sparse+Recovery+in+the+L1+Norm&rft.au=Indyk%2C+P.&rft.au=Ruzic%2C+M.&rft.date=2008-10-01&rft.pub=IEEE&rft.isbn=9780769534367&rft.issn=0272-5428&rft.spage=199&rft.epage=207&rft_id=info:doi/10.1109%2FFOCS.2008.82&rft.externalDocID=4690954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-5428&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-5428&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-5428&client=summon