Near-Optimal Sparse Recovery in the L1 Norm
We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a high-dimensional vector xisinRopf n from its lower-dimensional sketch AxisinRopf m . Specifically, we focus on the sparse recovery problem in the L 1 norm: for a parameter k, given the sketch Ax, comp...
Saved in:
| Published in | 2008 49th Annual IEEE Symposium on Foundations of Computer Science pp. 199 - 207 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English Japanese |
| Published |
IEEE
01.10.2008
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 0769534368 9780769534367 |
| ISSN | 0272-5428 |
| DOI | 10.1109/FOCS.2008.82 |
Cover
| Abstract | We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a high-dimensional vector xisinRopf n from its lower-dimensional sketch AxisinRopf m . Specifically, we focus on the sparse recovery problem in the L 1 norm: for a parameter k, given the sketch Ax, compute an approximation xcirc of x such that the L 1 approximation error parx-xcircpar 1 is close to min x' parx-x'par 1 , where x' ranges over all vectors with at most k terms. The sparse recovery problem has been subject to extensive research over the last few years. Many solutions to this problem have been discovered, achieving different trade-offs between various attributes, such as the sketch length, encoding and recovery times. In this paper we provide a sparse recovery scheme which achieves close to optimal performance on virtually all attributes (see Figure 1). In particular, this is the first recovery scheme that guarantees O(k log(n/k)) sketch length, and near-linear O(n log (n/k)) recovery time simultaneously. It also features low encoding and update times, and is noise-resilient. |
|---|---|
| AbstractList | We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a high-dimensional vector xisinRopf n from its lower-dimensional sketch AxisinRopf m . Specifically, we focus on the sparse recovery problem in the L 1 norm: for a parameter k, given the sketch Ax, compute an approximation xcirc of x such that the L 1 approximation error parx-xcircpar 1 is close to min x' parx-x'par 1 , where x' ranges over all vectors with at most k terms. The sparse recovery problem has been subject to extensive research over the last few years. Many solutions to this problem have been discovered, achieving different trade-offs between various attributes, such as the sketch length, encoding and recovery times. In this paper we provide a sparse recovery scheme which achieves close to optimal performance on virtually all attributes (see Figure 1). In particular, this is the first recovery scheme that guarantees O(k log(n/k)) sketch length, and near-linear O(n log (n/k)) recovery time simultaneously. It also features low encoding and update times, and is noise-resilient. |
| Author | Indyk, P. Ruzic, M. |
| Author_xml | – sequence: 1 givenname: P. surname: Indyk fullname: Indyk, P. – sequence: 2 givenname: M. surname: Ruzic fullname: Ruzic, M. organization: ITU Copenhagen, Copenhagen |
| BookMark | eNotzktLw0AUQOEBK9jXzp2b2cvEO5N53FlKsFUIDbS6LpPkBiNtEiZB6L-3oquzO3wLNuv6jhi7l5BICf5pU2SHRAFgguqGLcBZb1KdWpyxOSinhNEK79h6HL8AQHrrwPo5e9xRiKIYpvYcTvwwhDgS31PVf1O88Lbj0yfxXPJdH88rdtuE00jr_y7Zx-blPXsVebF9y55z0UpjJ6F-PRik1la71IUrw1RovHIIWEmoqVZYOm-xclRRQAtU-rouoZGN9nW6ZA9_35aIjkO80uLlqK0Hb3T6A9kvQNw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/FOCS.2008.82 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EndPage | 207 |
| ExternalDocumentID | 4690954 |
| Genre | orig-research |
| GroupedDBID | -~X 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACNCT ADZIZ AFFNX AI. ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS VH1 |
| ID | FETCH-LOGICAL-i156t-211098a14464737a5345c85927808c10ded28b7968c7ecea860eb9ddb0f1f49d3 |
| IEDL.DBID | RIE |
| ISBN | 0769534368 9780769534367 |
| ISSN | 0272-5428 |
| IngestDate | Wed Aug 27 02:07:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i156t-211098a14464737a5345c85927808c10ded28b7968c7ecea860eb9ddb0f1f49d3 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_4690954 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-10 |
| PublicationDateYYYYMMDD | 2008-10-01 |
| PublicationDate_xml | – month: 10 year: 2008 text: 2008-10 |
| PublicationDecade | 2000 |
| PublicationTitle | 2008 49th Annual IEEE Symposium on Foundations of Computer Science |
| PublicationTitleAbbrev | FOCS |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001967069 ssj0040503 |
| Score | 1.6731846 |
| Snippet | We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a high-dimensional vector xisinRopf n from its... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 199 |
| SubjectTerms | Analog computers Approximation error Compressed sensing Computer errors Computer science Data acquisition Encoding expanders Hardware l1 norm Linearity sparse recovery streaming algorithms Vectors |
| Title | Near-Optimal Sparse Recovery in the L1 Norm |
| URI | https://ieeexplore.ieee.org/document/4690954 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ72ggPGdPXi00G13u7tnIiFGwARJuJF9kRC1EiwH_fXu9kViPHhrmx7a2cy3883OfANwt44J8S2fgdTOyQlWOJBWxgGWXDksZIJZf6I7mSbjBXlc0mUD7uteGGttXnxm-_4yP8s3H3rvU2UDT-UEJU1oMp4UvVqHfIpIWOiHZRcoTLzOSZ5fYV7rP-IFZRc09pLrpfJOdc_qingxGM2G86LEMtfmO0xcyTecURsm1acWdSav_X2m-vr7l4rjf__lBHqH1j70XG9ap9CwaQfa1WwHVLp6B44ntZ7rZxccFspdMHPw8i7f0Hzr2LBFnrk6R_hCmxS5d9ETRlMXAfdgMXp4GY6DcsxCsHHkLQs8BRRcemJIWMykMwnVnIrIWYi7FTTWRFwxkXDNrLaSJ6FVwhgVrvGaCBOfQSv9SO05IGxD60I0h5naxTVUKmOwkFQnimgamuQCut4Sq22hpLEqjXD59-MrOIoq9Vl8Da1st7c3LgTI1G2-9j_rzKcW |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtQLChjf7sGjhT52u90zkaBSMAESbmRfJEYtBMtBf727fZEYD97apod22vl2vtmZbwDulgHGtuXT4dI4OfaE53DNA8fjkTBYSBnVdkc3HoWDGX6ak3kN7qteGK11VnymO_Yw28tXK7m1qbKupXKM4D3YJxhjkndr7TIqLKSuHZed4zC2SidZhoVatX8_ykk7I4EVXS-0d8pzWtXEs25_3JvkRZaZOt9u5kq25PQbEJcPm1eavHW2qejI7186jv99m2No75r70Eu1bJ1ATSdNaJTTHVDh7E04iitF188WGDTkG2dsAOaDv6PJ2vBhjSx3Na7whV4TZO5FQw-NTAzchln_YdobOMWgBefV0LfUsSSQRdxSQ0wDyo1JiIwI842FIvMNlVZ-JCgLI0m11DwKXS2YUsJdekvMVHAK9WSV6DNAnna1CdIMakoT2RAulPIYJzIUWBJXhefQspZYrHMtjUVhhIu_L9_CwWAaDxfDx9HzJRz6pRatdwX1dLPV1yYgSMVN9h_8AOa4qmM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+49th+Annual+IEEE+Symposium+on+Foundations+of+Computer+Science&rft.atitle=Near-Optimal+Sparse+Recovery+in+the+L1+Norm&rft.au=Indyk%2C+P.&rft.au=Ruzic%2C+M.&rft.date=2008-10-01&rft.pub=IEEE&rft.isbn=9780769534367&rft.issn=0272-5428&rft.spage=199&rft.epage=207&rft_id=info:doi/10.1109%2FFOCS.2008.82&rft.externalDocID=4690954 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-5428&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-5428&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-5428&client=summon |