Gauss-Newton approximation to Bayesian learning

This paper describes the application of Bayesian regularization to the training of feedforward neural networks. A Gauss-Newton approximation to the Hessian matrix, which can be conveniently implemented within the framework of the Levenberg-Marquardt algorithm, is used to reduce the computational ove...

Full description

Saved in:
Bibliographic Details
Published in1997 IEEE International Conference on Neural Networks Vol. 3; pp. 1930 - 1935 vol.3
Main Authors Dan Foresee, F., Hagan, M.T.
Format Conference Proceeding
LanguageEnglish
Japanese
Published IEEE 1997
Subjects
Online AccessGet full text
ISBN0780341228
9780780341227
DOI10.1109/ICNN.1997.614194

Cover

Abstract This paper describes the application of Bayesian regularization to the training of feedforward neural networks. A Gauss-Newton approximation to the Hessian matrix, which can be conveniently implemented within the framework of the Levenberg-Marquardt algorithm, is used to reduce the computational overhead. The resulting algorithm is demonstrated on a simple test problem and is then applied to three practical problems. The results demonstrate that the algorithm produces networks which have excellent generalization capabilities.
AbstractList This paper describes the application of Bayesian regularization to the training of feedforward neural networks. A Gauss-Newton approximation to the Hessian matrix, which can be conveniently implemented within the framework of the Levenberg-Marquardt algorithm, is used to reduce the computational overhead. The resulting algorithm is demonstrated on a simple test problem and is then applied to three practical problems. The results demonstrate that the algorithm produces networks which have excellent generalization capabilities.
Author Hagan, M.T.
Dan Foresee, F.
Author_xml – sequence: 1
  givenname: F.
  surname: Dan Foresee
  fullname: Dan Foresee, F.
  organization: Lucent Technol., Oklahoma City, OK, USA
– sequence: 2
  givenname: M.T.
  surname: Hagan
  fullname: Hagan, M.T.
BookMark eNotj8FOwzAQRC0BErT0jjjlB5J6bSf2HiGCUqkKFzhXm3qDjIoTxUHQvydSmctoLm9mFuIy9pGFuANZAEhcb-umKQDRFhUYQHMhFtI6qQ0o5a7FKqVPOcuUBiu8EesNfaeUN_wz9TGjYRj73_BFU5jT1GePdOIUKGZHpjGG-HErrjo6Jl79-1K8Pz-91S_57nWzrR92eYBST3nFFt1c6Xxbsu28sp1pW2xL45RC0u3BAmgPCt2BrfUEhshWQIoIOy_1UtyfuYGZ98M4bxpP-_Ml_Qff2UMm
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICNN.1997.614194
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès INSA - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EndPage 1935 vol.3
ExternalDocumentID 614194
GroupedDBID 6IE
6IK
6IL
AAJGR
AAWTH
ACGHX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i153t-6e7984128db5e7fd27f4bb9b548229a3bc7113d1298ce77da14aa761a2aa9fd03
IEDL.DBID RIE
ISBN 0780341228
9780780341227
IngestDate Tue Aug 26 18:26:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i153t-6e7984128db5e7fd27f4bb9b548229a3bc7113d1298ce77da14aa761a2aa9fd03
ParticipantIDs ieee_primary_614194
PublicationCentury 1900
PublicationDate 19970000
PublicationDateYYYYMMDD 1997-01-01
PublicationDate_xml – year: 1997
  text: 19970000
PublicationDecade 1990
PublicationTitle 1997 IEEE International Conference on Neural Networks
PublicationTitleAbbrev ICNN
PublicationYear 1997
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000454969
Score 1.6008475
Snippet This paper describes the application of Bayesian regularization to the training of feedforward neural networks. A Gauss-Newton approximation to the Hessian...
SourceID ieee
SourceType Publisher
StartPage 1930
SubjectTerms Application software
Bayesian methods
Cities and towns
Computer networks
Feedforward neural networks
Least squares methods
Neural networks
Newton method
Recursive estimation
Testing
Title Gauss-Newton approximation to Bayesian learning
URI https://ieeexplore.ieee.org/document/614194
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJyZeRbyVgdVp4rg5e6WiFCQqBip1q3y2gyqkFtFEAn49fqQgEAOb4yHKKdZ99_D3HSGXyNGhugGKOjeUl8JQiUxTJQX6I1KJMDrhflKOp_xuNpi1OtuBC2OtDZfPbOqXoZdvVrrxpbK-gxKXc3dIB0QZqVpf5RSvJCdLGRJzkTnXzJho9XU2z7DpUmayfzucTDxRD9L4zh-zVQK0jHYiZ3sdFAn9jZLntKkx1R-_9Br_-dW7pPfN4UsevtBpj2zZ5QHp36hmvabOs7mQLwl64m-LSF5M6lVypd6tJ1Um7SyJpx6Zjq4fh2PajkygC-e6alpakMIZKwwOLFSGQcURJbq8hDGpCtSQ54VxIC-0BTAq50pBmSumlKxMVhyS7nK1tEck0bxQqiosRwVco5ZaWuMbj8JFgJmGY7LvbZ2_RFWMeTTz5M_dU7IdZV996eKMdOvXxp47MK_xIvzGTx6Rm2E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLagDDBxFXGTgdVpDie2VypKC23E0ErdKj_bQQipRTSRgF-Pj7QIxMDmeIjyFOt97_D3PYSugYBBdUUxyFhhkjOFOSQSC87AHpGSudEJoyLvT8j9NJs2OtuOC6O1dpfPdGiXrpevFrK2pbKOgRKTc2-irYwQknmy1rqgYrXkeM5das4i45yThDUKO6tnuupTRrwz6BaFperR0L_1x3QVBy69Xc_aXjpNQnun5CWsKwjl5y_Fxn9-9x5qf7P4gsc1Pu2jDT0_RJ07US-X2Pg2E_QFTlH8_dnTF4NqEdyID21plUEzTeKpjSa923G3j5uhCfjZOK8K55pyZoxlCjJNS5XQkgBwMJlJknCRgqRxnCoD80xqSpWIiRA0j0UiBC9VlB6h1nwx18cokCQVokw1AUGJBMkl18q2HpmJASNJT9CBtXX26nUxZt7M0z93r9B2fzwazoaD4uEM7XgRWFvIOEet6q3WFwbaK7h0v_QLeB-erg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=1997+IEEE+International+Conference+on+Neural+Networks&rft.atitle=Gauss-Newton+approximation+to+Bayesian+learning&rft.au=Dan+Foresee%2C+F.&rft.au=Hagan%2C+M.T.&rft.date=1997-01-01&rft.pub=IEEE&rft.isbn=9780780341227&rft.volume=3&rft.spage=1930&rft.epage=1935+vol.3&rft_id=info:doi/10.1109%2FICNN.1997.614194&rft.externalDocID=614194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780341227/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780341227/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780341227/sc.gif&client=summon&freeimage=true