A fall detection algorithm based on pattern recognition and human posture analysis

Detecting fall is a particular important task in security monitoring and healthcare applications of sensor networks. However traditional approaches suffer from either a high false positive rate or high false negative rate, especially when the collected sensor data are unbalanced. Therefore, there is...

Full description

Saved in:
Bibliographic Details
Published inICCTA 2011 : IET International Conference on Communication Technology and Application : 14-16 October 2011 pp. 853 - 857
Main Authors Huang, Cheng, Luo, Haiyong, Zhao, Fang
Format Conference Proceeding
LanguageEnglish
Published Stevenage IET 2011
The Institution of Engineering & Technology
Subjects
Online AccessGet full text
ISBN9781849194709
184919470X
DOI10.1049/cp.2011.0790

Cover

Abstract Detecting fall is a particular important task in security monitoring and healthcare applications of sensor networks. However traditional approaches suffer from either a high false positive rate or high false negative rate, especially when the collected sensor data are unbalanced. Therefore, there is a lack of tradeoff between false alarms and misses for many traditional data mining methods to be applied. To solve this problem a novel fall detection algorithm based on pattern recognition and human posture analysis is presented in this paper. It firstly extracts thirty temporal features from the original data traces for different length adaptation of samples, and then exploits Hidden Markov Model (HMM) to filter the noisy character data and reduce the dimension of feature vectors. After that, it performs a closer classification with one-class Support Vector Machine (OCSVM) to filter the high false positive samples, and finally applies posture analysis to counteract the effects of high false negative samples until a satisfying accuracy is achieved. Simulation with real data demonstrates that the proposed algorithm outperforms other existing approaches.
AbstractList Detecting fall is a particular important task in security monitoring and healthcare applications of sensor networks. However traditional approaches suffer from either a high false positive rate or high false negative rate, especially when the collected sensor data are unbalanced. Therefore, there is a lack of tradeoff between false alarms and misses for many traditional data mining methods to be applied. To solve this problem a novel fall detection algorithm based on pattern recognition and human posture analysis is presented in this paper. It firstly extracts thirty temporal features from the original data traces for different length adaptation of samples, and then exploits Hidden Markov Model (HMM) to filter the noisy character data and reduce the dimension of feature vectors. After that, it performs a closer classification with one-class Support Vector Machine (OCSVM) to filter the high false positive samples, and finally applies posture analysis to counteract the effects of high false negative samples until a satisfying accuracy is achieved. Simulation with real data demonstrates that the proposed algorithm outperforms other existing approaches.
Author Haiyong Luo
Huang Cheng
Fang Zhao
Author_xml – sequence: 1
  givenname: Cheng
  surname: Huang
  fullname: Huang, Cheng
– sequence: 2
  givenname: Haiyong
  surname: Luo
  fullname: Luo, Haiyong
– sequence: 3
  givenname: Fang
  surname: Zhao
  fullname: Zhao, Fang
BookMark eNotkE9LAzEQxQMqqLU3P0DAo7RmkmyzOZbiPygIoueQzc62W7bJmmQPfntTKgwMvPnxePNuyaUPHgm5B7YEJvWTG5ecASyZ0uyCzLWqoZYatFRMX5N5SgfGGOhVraG6IZ9r2tlhoC1mdLkPntphF2Kf90fa2IQtLdJoc8boaUQXdr4_Y76l--loyzWkPEUsih1-U5_uyFWxTDj_3zPy_fL8tXlbbD9e3zfr7aIHqfNCNFUlmVXcWlkBcuDCrWSreVFLwAoa1ZUXGsFd2wFwK5TjHQO74qJljRUz8nD2HWP4mTBlcwhTLCGSAaUqKesyhXo8Uz1m44LvMKJ3WBhmTn0ZN5pTX-bUl_gDMfBfxg
ContentType Conference Proceeding
Copyright Copyright The Institution of Engineering & Technology Oct 14, 2011
Copyright_xml – notice: Copyright The Institution of Engineering & Technology Oct 14, 2011
DBID 8ET
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1049/cp.2011.0790
DatabaseName IET Conference Publications by volume
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
EndPage 857
ExternalDocumentID 3995887421
10_1049_cp_2011_0790
GroupedDBID 6IE
6IK
8ET
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
8FE
8FG
AAWTH
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ID FETCH-LOGICAL-i149t-3b5540a72aa451e2123c64d9254000151b7f790b32cdf112a37c2f01a623d0ba3
IEDL.DBID BENPR
ISBN 9781849194709
184919470X
IngestDate Mon Jun 30 08:55:45 EDT 2025
Tue Jan 05 23:27:57 EST 2021
IsPeerReviewed false
IsScholarly false
Keywords high false positive rate
support vector machines
high false negative rate
hidden Markov model
data mining
object detection
healthcare application
hidden Markov models
sensor network
feature extraction
fall detection algorithm
human posture analysis
one-class support vector machine
accelerometers
security monitoring
medical administrative data processing
data mining method
temporal feature
health care
image recognition
pattern recognition
Language English
LinkModel DirectLink
MeetingName IET International Conference on Communication Technology and Application (ICCTA 2011), 14-16 Oct. 2011, Beijing, China
MergedId FETCHMERGED-LOGICAL-i149t-3b5540a72aa451e2123c64d9254000151b7f790b32cdf112a37c2f01a623d0ba3
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
PQID 1775448448
PQPubID 1936365
PageCount 5
ParticipantIDs proquest_journals_1775448448
iet_conferences_10_1049_cp_2011_0790
ProviderPackageCode 8ET
PublicationCentury 2000
PublicationDate 20110000
20111014
PublicationDateYYYYMMDD 2011-01-01
2011-10-14
PublicationDate_xml – year: 2011
  text: 20110000
PublicationDecade 2010
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle ICCTA 2011 : IET International Conference on Communication Technology and Application : 14-16 October 2011
PublicationYear 2011
Publisher IET
The Institution of Engineering & Technology
Publisher_xml – name: IET
– name: The Institution of Engineering & Technology
SSID ssj0001968915
Score 1.6567708
Snippet Detecting fall is a particular important task in security monitoring and healthcare applications of sensor networks. However traditional approaches suffer from...
SourceID proquest
iet
SourceType Aggregation Database
Publisher
StartPage 853
SubjectTerms Computer vision and image processing techniques
Image recognition
Knowledge engineering techniques
Markov processes
Medical administration
Sensing devices and transducers
Title A fall detection algorithm based on pattern recognition and human posture analysis
URI http://digital-library.theiet.org/content/conferences/10.1049/cp.2011.0790
https://www.proquest.com/docview/1775448448
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5se_HmE2tr2YN4C2bz6HYPIiqtRbCUotBb2OxDC20abfz_zq7bFBGEXLLZQzJLZr7Z_eYbgEslnRCYJTzFmKAgBA-EYSoYUKvEkuaMOcr_86Q_fk2e5ul8DybbWhhLq9z6ROeo1VraPfJr6qTaBnjdlh-B7RplT1e3LTSEb62gbpzEWANakVXGakLrfjiZzna7LvgCnKY_teQcE3gWehme-p57ejxC52tZepFPZn12Y6GrPy7bxaHRAZzsKvTItI49h7CniyPoeHS52KzIFflV-rE5htkdMWK5JEpXjn5VELF8wy-s3lfExjJFcKh0cpsFqXlFdlqhiGvlR8r1xh444MiPkskJvI6GLw_jwHdUCBaYCVVBnCN6CAWLhEhSqm3Ykv1EccwSXVE1zZnBT83jSCqDSEzETEYmpAJBkgpzEZ9Cs1gX-gwIT6Q2PKFsIGUiZMq1MoYaHqYaIZ5hbbhEc2Wytsomc-fdCc9kmVmrZtaqbehu7Zn5vwcn1mt9_v_jDuxHnpNHky40q88vfYEgocp70BiMHnt-_Xuuru8brZG5pQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-wwFD74WHh3vi7XdxZ6d8WmTc1kIeKT8TWIKLiraR46MHaqrYh_zt_mScxURHAndNM0FPolzflOcs53ANa18kJgLuApRQcFKXgkLddRhzollqzg3If8n_e2utfs5Ca7GYO3US6MC6scrYl-odZD5fbIN6mXauvgtVM9Rq5qlDtdHZXQkKG0gt72EmMhsePUvL6gC1dvHx_geG8kydHh1X43ClUGoj56B02UFmhRY8kTKVlGjVvK1RbTAj0nn2hMC265iIs0UdoiO5EpV4mNqUTioONCpvjecZhkKRPo_E3uHfYuLj93efCDBc0-ctcFFYzHQfanvRchHB-p-qaqgqgodzZivG-abybC272jaZj_zAgkF62tm4ExU87CUmCz_fqB_CdfUk3qObjcJVYOBkSbxod7lUQO7hDR5v6BONupCTZVXt6zJG0ck-tWauJLB5JqWLsDDmz5UE6Zh-tfwfYvTJTD0vwDIpgyVjDKO0oxqTJhtLXUijgzSCktX4B1hCtXLSp17s_XmchVlTtUc4fqAiyP8MzD34od27m1-PPjNZjqXp2f5WfHvdMl-JOEeEDKlmGieXo2K0hQmmI1zAICt7898d4BCZnyiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ICCTA+2011+%3A+IET+International+Conference+on+Communication+Technology+and+Application+%3A+14-16+October+2011&rft.atitle=A+fall+detection+algorithm+based+on+pattern+recognition+and+human+posture+analysis&rft.au=Huang%2C+Cheng&rft.au=Luo%2C+Haiyong&rft.au=Zhao%2C+Fang&rft.date=2011-10-14&rft.pub=The+Institution+of+Engineering+%26+Technology&rft.isbn=9781849194709&rft_id=info:doi/10.1049%2Fcp.2011.0790&rft.externalDocID=3995887421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781849194709/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781849194709/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781849194709/sc.gif&client=summon&freeimage=true