Improving activity classification for health applications on mobile devices using active and semi-supervised learning

Mobile phones' increasing ubiquity has created many opportunities for personal context sensing. Personal activity is an important part of a user's context, and automatically recognizing it is vital for health and fitness monitoring applications. Recording a stream of activity data enables...

Full description

Saved in:
Bibliographic Details
Published in2010 4th International Conference on Pervasive Computing Technologies for Healthcare pp. 1 - 7
Main Authors Longstaff, Brent, Reddy, Sasank, Estrin, Deborah
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2010
Subjects
Online AccessGet full text
ISSN2153-1633
DOI10.4108/ICST.PERVASIVEHEALTH2010.8851

Cover

Abstract Mobile phones' increasing ubiquity has created many opportunities for personal context sensing. Personal activity is an important part of a user's context, and automatically recognizing it is vital for health and fitness monitoring applications. Recording a stream of activity data enables monitoring patients with chronic conditions affecting ambulation and motion, as well as those undergoing rehabilitation treatments. Modern mobile phones are powerful enough to perform activity classification in real time, but they typically use a static classifier that is trained in advance or require the user to manually add training data after the application is on his/her device. This paper investigates ways of automatically augmenting activity classifiers after they are deployed in an application. It compares active learning and three different semi-supervised learning methods, self-learning, En-Co-Training, and democratic co-learning, to determine which show promise for this purpose. The results show that active learning, En-Co-Training, and democratic co-learning perform well when the initial classifier's accuracy is low (75-80%). When the initial accuracy is already high (90%), these methods are no longer effective, but they do not hurt the accuracy either. Overall, active learning gave the highest improvement, but democratic co-learning was almost as good and does not require user interaction. Thus, democratic co-learning would be the best choice for most applications, since it would significantly increase the accuracy for initial classifiers that performed poorly.
AbstractList Mobile phones' increasing ubiquity has created many opportunities for personal context sensing. Personal activity is an important part of a user's context, and automatically recognizing it is vital for health and fitness monitoring applications. Recording a stream of activity data enables monitoring patients with chronic conditions affecting ambulation and motion, as well as those undergoing rehabilitation treatments. Modern mobile phones are powerful enough to perform activity classification in real time, but they typically use a static classifier that is trained in advance or require the user to manually add training data after the application is on his/her device. This paper investigates ways of automatically augmenting activity classifiers after they are deployed in an application. It compares active learning and three different semi-supervised learning methods, self-learning, En-Co-Training, and democratic co-learning, to determine which show promise for this purpose. The results show that active learning, En-Co-Training, and democratic co-learning perform well when the initial classifier's accuracy is low (75-80%). When the initial accuracy is already high (90%), these methods are no longer effective, but they do not hurt the accuracy either. Overall, active learning gave the highest improvement, but democratic co-learning was almost as good and does not require user interaction. Thus, democratic co-learning would be the best choice for most applications, since it would significantly increase the accuracy for initial classifiers that performed poorly.
Author Estrin, Deborah
Reddy, Sasank
Longstaff, Brent
Author_xml – sequence: 1
  givenname: Brent
  surname: Longstaff
  fullname: Longstaff, Brent
  email: blongstaff@ucla.edu
  organization: Center for Embedded Networked Sensing, Univ. of California Los Angeles, Los Angeles, CA, USA
– sequence: 2
  givenname: Sasank
  surname: Reddy
  fullname: Reddy, Sasank
  email: sasank@ucla.edu
  organization: Center for Embedded Networked Sensing, Univ. of California Los Angeles, Los Angeles, CA, USA
– sequence: 3
  givenname: Deborah
  surname: Estrin
  fullname: Estrin, Deborah
  email: destrin@cs.ucla.edu
  organization: Center for Embedded Networked Sensing, Univ. of California Los Angeles, Los Angeles, CA, USA
BookMark eNo9kF1rwjAUhjPYYM75C3aTm13WNV8muRmIuFkQNqbztqTp6cyIbWlqh_9-LYpXB87Hw3ueB3RbViUg9EziKSexekkWm-30c_m1m2-S3XK1nK-3Kxr3U6UEuUETLZWeMS21VlrfohElgkVkxtg9moTwG8cx0TMpFBmhY3Kom6pz5Q82tnWda0_YehOCK5w1ratKXFQN3oPx7R6buvaXdsD96FBlzgPOoXMWAj6GKwewKXMc4OCicKyh6VyAHHswTdnvPKK7wvgAk0sdo--35XaxitYf78livo4c4YJEktOcMF3IPKOSc4A-NoGMgrRMchFbJQpmssxCbigTBgrJqOKcz1jBlbBsjF7P3GNZm9Of8T6tG3cwzSklcTq4TJ0NbToENKFPff5zcJkOLnvA0xngAOB6K7iitDf8D96XeqM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.4108/ICST.PERVASIVEHEALTH2010.8851
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9789639799899
9639799890
EndPage 7
ExternalDocumentID 10.4108/icst.pervasivehealth2010.8851
5482296
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-i1451-742d139f7db2744ee1961eb2e7c37450c85f3abbceda235aef732844463f485c3
IEDL.DBID RIE
ISSN 2153-1633
IngestDate Thu Aug 28 11:22:52 EDT 2025
Wed Aug 27 02:26:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1451-742d139f7db2744ee1961eb2e7c37450c85f3abbceda235aef732844463f485c3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://eudl.eu/pdf/10.4108/ICST.PERVASIVEHEALTH2010.8851
PageCount 7
ParticipantIDs unpaywall_primary_10_4108_icst_pervasivehealth2010_8851
ieee_primary_5482296
PublicationCentury 2000
PublicationDate 2010-March
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-March
PublicationDecade 2010
PublicationTitle 2010 4th International Conference on Pervasive Computing Technologies for Healthcare
PublicationTitleAbbrev PCTHEALTH
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967581
ssj0003188993
Score 1.7756183
Snippet Mobile phones' increasing ubiquity has created many opportunities for personal context sensing. Personal activity is an important part of a user's context, and...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 1
SubjectTerms Biomedical monitoring
Cardiac disease
Cardiovascular diseases
Machine learning algorithms
Mobile handsets
Patient monitoring
Semisupervised learning
Smart phones
Training data
User interfaces
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jA8UXlU2cqORBH1vXJv3Y4xgdnegY7oPtqSRNIsOtG3ZF9K83t3ZV0Bd9Dleau3zcXX53P4RuFHGFUtQ2KHeJQYnbNnypqBH7LeYzhwiLQ2rgceCGE3o_c2YVtGfpk5lYmjK72wgF-5kCSU2_Oxqbw-Bp2hn1p0EYdB7G4Q6S5ftQO11z4WmpimqTwbAzP0C3e7lFnOpJQWoTgOB5WWEpV5CpHKHDLNmw9ze2XH67V3rHaL6vzsnhJC9mtuVm_PGzWeOff_kENb6q-fCwvKdOUUUmdZSV2QQMpQ3AIIFj8KQBOrSzFtbuLM7ng78_c2M9tFpzfZpgIXfnDAbwfPEdiVkicCpXCyPNQC2LVApccFM8N9CkF4y7oVFQMBgLoPA1dOAstI-oPMGhlaCUesNaOhiXXkw86rRi31GEcR5LwWziMKmg-Q_VMSZR1HdicoaqyTqR5whblgc8Ra7P3Ra1GGUtJgV0bOOU2lqsiepgkWiTd9mIdChl2223ibzSQuWYjlxAzxGYOPrFxBHo-eLfkpeoun3N5JV2N7b8ulhZn0mM2fs
  priority: 102
  providerName: Unpaywall
Title Improving activity classification for health applications on mobile devices using active and semi-supervised learning
URI https://ieeexplore.ieee.org/document/5482296
http://eudl.eu/pdf/10.4108/ICST.PERVASIVEHEALTH2010.8851
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xkGh7gRZQKS3aA71109i7fuQYoaCACIpKgujJ2scYRYATNbGq9tczY7sGoR642Vp55d1Zzc7jm_kAjnMV-zzXodQ2VlKruCdTzLV0adekJlI-sBwaGF3Gw6k-v4lu1uBbWwuDiBX4DDv8WOXy_dyVHCr7TtZ1GPbidVhPkl5dq_UUT-mx6Ru073RWyZXgBDNdakqS2aG24CvpCM3EN2cnV5POePDjun91dj0YDvoXk2EF80pTTllWRCvv4E1ZLMyf3-b-_tmdc7oNo39_W0NN7jrlynbc3xeNHF-7nB3Ye6ruE-P23noPa1h8gK1Rk2TfhbINNAiuemByCeHYyGZUUSVIQZauqCsoxfMMuKChh7klRSM8VipIMK6-mQeFKbxY4sNMLssF66gletHQVtzuwfR0MDkZyoadQc6Y3VeST-3JfMwTb7nLICJJICA_HROnEh11XRrlyljr0JtQRQZz7gukyf1UuU4jp_Zho5gX-BFEECRMYRSnNu7qwGjTNei5mZvVOqTPDmCXdy9b1A04smbjDiBpBdSOkVPDEs5mbrnKeC2GywDqLWEJZyzhT_-f8BDe1uAAhph9ho3VrxK_kM2xskfVYTuCzenluP_zEVgA14A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RkIBeSgtVKZTuob1109i7fuSIUJADCUIlIG7WPsZVVHAiEqtqf31nbNegqgdutlZeeXdWs9_MfDMD8KlQsS8KHUptYyW1igcyxUJLl_ZNaiLlA8uugclFnF3rs9vodg2-dLkwiFiTz7DHj3Us389dxa6yr4Suw3AQv4CNiKyKpMnWevSoDBj8Bt07nVYyJjjETNeakgQ81CZ8Ji2hufXN6ORq2rscfrs5vhrdDLPh8Xia1USvNOWgZd1q5SVsVeXC_Ppp7u6e3Dqnr2Dy938bssmPXrWyPff7n1KOz13QDuw95veJy-7meg1rWL6BzUkbZt-FqnM1CM574PYSwjHMZl5RLUpBWFc0OZTiaQxc0ND93JKqER5rJSSYWd_Og8KUXizxfiaX1YK11BK9aBtXfN-D69Ph9CSTbX8GOeP-vpKsak8Aski85TqDiCSBgCx1TJxKdNR3aVQoY61Db0IVGSy4MpAmA1QVOo2cegvr5bzEdyCCIOEmRnFq474OjDZ9g57LuVmtQ_psH3Z59_JFU4IjbzduH5JOQN0YmTUs4Xzmlquc12I4EaDZEpZwzhJ-__8JP8JWNp2M8_Ho4vwAthuqABPODmF99VDhB0IgK3tUH7w_BgrZIQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jA8UXlU2cqORBH1vXJv3Y4xgdnegY7oPtqSRNIsOtG3ZF9K83t3ZV0Bd9Dleau3zcXX53P4RuFHGFUtQ2KHeJQYnbNnypqBH7LeYzhwiLQ2rgceCGE3o_c2YVtGfpk5lYmjK72wgF-5kCSU2_Oxqbw-Bp2hn1p0EYdB7G4Q6S5ftQO11z4WmpimqTwbAzP0C3e7lFnOpJQWoTgOB5WWEpV5CpHKHDLNmw9ze2XH67V3rHaL6vzsnhJC9mtuVm_PGzWeOff_kENb6q-fCwvKdOUUUmdZSV2QQMpQ3AIIFj8KQBOrSzFtbuLM7ng78_c2M9tFpzfZpgIXfnDAbwfPEdiVkicCpXCyPNQC2LVApccFM8N9CkF4y7oVFQMBgLoPA1dOAstI-oPMGhlaCUesNaOhiXXkw86rRi31GEcR5LwWziMKmg-Q_VMSZR1HdicoaqyTqR5whblgc8Ra7P3Ra1GGUtJgV0bOOU2lqsiepgkWiTd9mIdChl2223ibzSQuWYjlxAzxGYOPrFxBHo-eLfkpeoun3N5JV2N7b8ulhZn0mM2fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+4th+International+Conference+on+Pervasive+Computing+Technologies+for+Healthcare&rft.atitle=Improving+activity+classification+for+health+applications+on+mobile+devices+using+active+and+semi-supervised+learning&rft.au=Longstaff%2C+Brent&rft.au=Reddy%2C+Sasank&rft.au=Estrin%2C+Deborah&rft.date=2010-03-01&rft.pub=IEEE&rft.issn=2153-1633&rft.spage=1&rft.epage=7&rft_id=info:doi/10.4108%2FICST.PERVASIVEHEALTH2010.8851&rft.externalDocID=5482296
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-1633&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-1633&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-1633&client=summon