Improving activity classification for health applications on mobile devices using active and semi-supervised learning
Mobile phones' increasing ubiquity has created many opportunities for personal context sensing. Personal activity is an important part of a user's context, and automatically recognizing it is vital for health and fitness monitoring applications. Recording a stream of activity data enables...
Saved in:
Published in | 2010 4th International Conference on Pervasive Computing Technologies for Healthcare pp. 1 - 7 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 2153-1633 |
DOI | 10.4108/ICST.PERVASIVEHEALTH2010.8851 |
Cover
Abstract | Mobile phones' increasing ubiquity has created many opportunities for personal context sensing. Personal activity is an important part of a user's context, and automatically recognizing it is vital for health and fitness monitoring applications. Recording a stream of activity data enables monitoring patients with chronic conditions affecting ambulation and motion, as well as those undergoing rehabilitation treatments. Modern mobile phones are powerful enough to perform activity classification in real time, but they typically use a static classifier that is trained in advance or require the user to manually add training data after the application is on his/her device. This paper investigates ways of automatically augmenting activity classifiers after they are deployed in an application. It compares active learning and three different semi-supervised learning methods, self-learning, En-Co-Training, and democratic co-learning, to determine which show promise for this purpose. The results show that active learning, En-Co-Training, and democratic co-learning perform well when the initial classifier's accuracy is low (75-80%). When the initial accuracy is already high (90%), these methods are no longer effective, but they do not hurt the accuracy either. Overall, active learning gave the highest improvement, but democratic co-learning was almost as good and does not require user interaction. Thus, democratic co-learning would be the best choice for most applications, since it would significantly increase the accuracy for initial classifiers that performed poorly. |
---|---|
AbstractList | Mobile phones' increasing ubiquity has created many opportunities for personal context sensing. Personal activity is an important part of a user's context, and automatically recognizing it is vital for health and fitness monitoring applications. Recording a stream of activity data enables monitoring patients with chronic conditions affecting ambulation and motion, as well as those undergoing rehabilitation treatments. Modern mobile phones are powerful enough to perform activity classification in real time, but they typically use a static classifier that is trained in advance or require the user to manually add training data after the application is on his/her device. This paper investigates ways of automatically augmenting activity classifiers after they are deployed in an application. It compares active learning and three different semi-supervised learning methods, self-learning, En-Co-Training, and democratic co-learning, to determine which show promise for this purpose. The results show that active learning, En-Co-Training, and democratic co-learning perform well when the initial classifier's accuracy is low (75-80%). When the initial accuracy is already high (90%), these methods are no longer effective, but they do not hurt the accuracy either. Overall, active learning gave the highest improvement, but democratic co-learning was almost as good and does not require user interaction. Thus, democratic co-learning would be the best choice for most applications, since it would significantly increase the accuracy for initial classifiers that performed poorly. |
Author | Estrin, Deborah Reddy, Sasank Longstaff, Brent |
Author_xml | – sequence: 1 givenname: Brent surname: Longstaff fullname: Longstaff, Brent email: blongstaff@ucla.edu organization: Center for Embedded Networked Sensing, Univ. of California Los Angeles, Los Angeles, CA, USA – sequence: 2 givenname: Sasank surname: Reddy fullname: Reddy, Sasank email: sasank@ucla.edu organization: Center for Embedded Networked Sensing, Univ. of California Los Angeles, Los Angeles, CA, USA – sequence: 3 givenname: Deborah surname: Estrin fullname: Estrin, Deborah email: destrin@cs.ucla.edu organization: Center for Embedded Networked Sensing, Univ. of California Los Angeles, Los Angeles, CA, USA |
BookMark | eNo9kF1rwjAUhjPYYM75C3aTm13WNV8muRmIuFkQNqbztqTp6cyIbWlqh_9-LYpXB87Hw3ueB3RbViUg9EziKSexekkWm-30c_m1m2-S3XK1nK-3Kxr3U6UEuUETLZWeMS21VlrfohElgkVkxtg9moTwG8cx0TMpFBmhY3Kom6pz5Q82tnWda0_YehOCK5w1ratKXFQN3oPx7R6buvaXdsD96FBlzgPOoXMWAj6GKwewKXMc4OCicKyh6VyAHHswTdnvPKK7wvgAk0sdo--35XaxitYf78livo4c4YJEktOcMF3IPKOSc4A-NoGMgrRMchFbJQpmssxCbigTBgrJqOKcz1jBlbBsjF7P3GNZm9Of8T6tG3cwzSklcTq4TJ0NbToENKFPff5zcJkOLnvA0xngAOB6K7iitDf8D96XeqM |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
DOI | 10.4108/ICST.PERVASIVEHEALTH2010.8851 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISBN | 9789639799899 9639799890 |
EndPage | 7 |
ExternalDocumentID | 10.4108/icst.pervasivehealth2010.8851 5482296 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL ADTOC UNPAY |
ID | FETCH-LOGICAL-i1451-742d139f7db2744ee1961eb2e7c37450c85f3abbceda235aef732844463f485c3 |
IEDL.DBID | RIE |
ISSN | 2153-1633 |
IngestDate | Thu Aug 28 11:22:52 EDT 2025 Wed Aug 27 02:26:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i1451-742d139f7db2744ee1961eb2e7c37450c85f3abbceda235aef732844463f485c3 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://eudl.eu/pdf/10.4108/ICST.PERVASIVEHEALTH2010.8851 |
PageCount | 7 |
ParticipantIDs | unpaywall_primary_10_4108_icst_pervasivehealth2010_8851 ieee_primary_5482296 |
PublicationCentury | 2000 |
PublicationDate | 2010-March |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-March |
PublicationDecade | 2010 |
PublicationTitle | 2010 4th International Conference on Pervasive Computing Technologies for Healthcare |
PublicationTitleAbbrev | PCTHEALTH |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001967581 ssj0003188993 |
Score | 1.7756183 |
Snippet | Mobile phones' increasing ubiquity has created many opportunities for personal context sensing. Personal activity is an important part of a user's context, and... |
SourceID | unpaywall ieee |
SourceType | Open Access Repository Publisher |
StartPage | 1 |
SubjectTerms | Biomedical monitoring Cardiac disease Cardiovascular diseases Machine learning algorithms Mobile handsets Patient monitoring Semisupervised learning Smart phones Training data User interfaces |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jA8UXlU2cqORBH1vXJv3Y4xgdnegY7oPtqSRNIsOtG3ZF9K83t3ZV0Bd9Dleau3zcXX53P4RuFHGFUtQ2KHeJQYnbNnypqBH7LeYzhwiLQ2rgceCGE3o_c2YVtGfpk5lYmjK72wgF-5kCSU2_Oxqbw-Bp2hn1p0EYdB7G4Q6S5ftQO11z4WmpimqTwbAzP0C3e7lFnOpJQWoTgOB5WWEpV5CpHKHDLNmw9ze2XH67V3rHaL6vzsnhJC9mtuVm_PGzWeOff_kENb6q-fCwvKdOUUUmdZSV2QQMpQ3AIIFj8KQBOrSzFtbuLM7ng78_c2M9tFpzfZpgIXfnDAbwfPEdiVkicCpXCyPNQC2LVApccFM8N9CkF4y7oVFQMBgLoPA1dOAstI-oPMGhlaCUesNaOhiXXkw86rRi31GEcR5LwWziMKmg-Q_VMSZR1HdicoaqyTqR5whblgc8Ra7P3Ra1GGUtJgV0bOOU2lqsiepgkWiTd9mIdChl2223ibzSQuWYjlxAzxGYOPrFxBHo-eLfkpeoun3N5JV2N7b8ulhZn0mM2fs priority: 102 providerName: Unpaywall |
Title | Improving activity classification for health applications on mobile devices using active and semi-supervised learning |
URI | https://ieeexplore.ieee.org/document/5482296 http://eudl.eu/pdf/10.4108/ICST.PERVASIVEHEALTH2010.8851 |
UnpaywallVersion | publishedVersion |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB7xkGh7gRZQKS3aA71109i7fuQYoaCACIpKgujJ2scYRYATNbGq9tczY7sGoR642Vp55d1Zzc7jm_kAjnMV-zzXodQ2VlKruCdTzLV0adekJlI-sBwaGF3Gw6k-v4lu1uBbWwuDiBX4DDv8WOXy_dyVHCr7TtZ1GPbidVhPkl5dq_UUT-mx6Ru073RWyZXgBDNdakqS2aG24CvpCM3EN2cnV5POePDjun91dj0YDvoXk2EF80pTTllWRCvv4E1ZLMyf3-b-_tmdc7oNo39_W0NN7jrlynbc3xeNHF-7nB3Ye6ruE-P23noPa1h8gK1Rk2TfhbINNAiuemByCeHYyGZUUSVIQZauqCsoxfMMuKChh7klRSM8VipIMK6-mQeFKbxY4sNMLssF66gletHQVtzuwfR0MDkZyoadQc6Y3VeST-3JfMwTb7nLICJJICA_HROnEh11XRrlyljr0JtQRQZz7gukyf1UuU4jp_Zho5gX-BFEECRMYRSnNu7qwGjTNei5mZvVOqTPDmCXdy9b1A04smbjDiBpBdSOkVPDEs5mbrnKeC2GywDqLWEJZyzhT_-f8BDe1uAAhph9ho3VrxK_kM2xskfVYTuCzenluP_zEVgA14A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5RkIBeSgtVKZTuob1109i7fuSIUJADCUIlIG7WPsZVVHAiEqtqf31nbNegqgdutlZeeXdWs9_MfDMD8KlQsS8KHUptYyW1igcyxUJLl_ZNaiLlA8uugclFnF3rs9vodg2-dLkwiFiTz7DHj3Us389dxa6yr4Suw3AQv4CNiKyKpMnWevSoDBj8Bt07nVYyJjjETNeakgQ81CZ8Ji2hufXN6ORq2rscfrs5vhrdDLPh8Xia1USvNOWgZd1q5SVsVeXC_Ppp7u6e3Dqnr2Dy938bssmPXrWyPff7n1KOz13QDuw95veJy-7meg1rWL6BzUkbZt-FqnM1CM574PYSwjHMZl5RLUpBWFc0OZTiaQxc0ND93JKqER5rJSSYWd_Og8KUXizxfiaX1YK11BK9aBtXfN-D69Ph9CSTbX8GOeP-vpKsak8Aski85TqDiCSBgCx1TJxKdNR3aVQoY61Db0IVGSy4MpAmA1QVOo2cegvr5bzEdyCCIOEmRnFq474OjDZ9g57LuVmtQ_psH3Z59_JFU4IjbzduH5JOQN0YmTUs4Xzmlquc12I4EaDZEpZwzhJ-__8JP8JWNp2M8_Ho4vwAthuqABPODmF99VDhB0IgK3tUH7w_BgrZIQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jA8UXlU2cqORBH1vXJv3Y4xgdnegY7oPtqSRNIsOtG3ZF9K83t3ZV0Bd9Dleau3zcXX53P4RuFHGFUtQ2KHeJQYnbNnypqBH7LeYzhwiLQ2rgceCGE3o_c2YVtGfpk5lYmjK72wgF-5kCSU2_Oxqbw-Bp2hn1p0EYdB7G4Q6S5ftQO11z4WmpimqTwbAzP0C3e7lFnOpJQWoTgOB5WWEpV5CpHKHDLNmw9ze2XH67V3rHaL6vzsnhJC9mtuVm_PGzWeOff_kENb6q-fCwvKdOUUUmdZSV2QQMpQ3AIIFj8KQBOrSzFtbuLM7ng78_c2M9tFpzfZpgIXfnDAbwfPEdiVkicCpXCyPNQC2LVApccFM8N9CkF4y7oVFQMBgLoPA1dOAstI-oPMGhlaCUesNaOhiXXkw86rRi31GEcR5LwWziMKmg-Q_VMSZR1HdicoaqyTqR5whblgc8Ra7P3Ra1GGUtJgV0bOOU2lqsiepgkWiTd9mIdChl2223ibzSQuWYjlxAzxGYOPrFxBHo-eLfkpeoun3N5JV2N7b8ulhZn0mM2fs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+4th+International+Conference+on+Pervasive+Computing+Technologies+for+Healthcare&rft.atitle=Improving+activity+classification+for+health+applications+on+mobile+devices+using+active+and+semi-supervised+learning&rft.au=Longstaff%2C+Brent&rft.au=Reddy%2C+Sasank&rft.au=Estrin%2C+Deborah&rft.date=2010-03-01&rft.pub=IEEE&rft.issn=2153-1633&rft.spage=1&rft.epage=7&rft_id=info:doi/10.4108%2FICST.PERVASIVEHEALTH2010.8851&rft.externalDocID=5482296 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-1633&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-1633&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-1633&client=summon |