Genetic Algorithm (GA)

J. H. Holland described how to apply the principles of natural selection to optimization problems and built the first genetic algorithms (GAs). The power of mathematics lies in the technology transfer: there exist certain models and methods, which describe many different phenomena and solve a wide v...

Full description

Saved in:
Bibliographic Details
Published inA Primer on Machine Learning Applications in Civil Engineering pp. 101 - 132
Main Author Deka, Paresh Chra
Format Book Chapter
LanguageEnglish
Published United Kingdom CRC Press 2020
Taylor & Francis
Taylor & Francis Group
Edition1
Subjects
Online AccessGet full text
ISBN9781138323391
113832339X
DOI10.1201/9780429451423-5

Cover

Abstract J. H. Holland described how to apply the principles of natural selection to optimization problems and built the first genetic algorithms (GAs). The power of mathematics lies in the technology transfer: there exist certain models and methods, which describe many different phenomena and solve a wide variety of problems. GAs are an example of mathematical technology transfer: by simulating evolution, one can solve optimization problems from a variety of sources. The principle of GAs is simple: imitate genetics and natural selection by a computer program. An algorithm is a series of steps for solving a problem. A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. Genetic algorithms are search algorithms based on the mechanics of natural selection and natural genetics. Algorithms are nothing but step-by-step procedures to find solutions to problems. A hybrid genetic algorithm has been designed by combining a variant of an already existing crossover operator with these heuristics.
AbstractList J. H. Holland described how to apply the principles of natural selection to optimization problems and built the first genetic algorithms (GAs). The power of mathematics lies in the technology transfer: there exist certain models and methods, which describe many different phenomena and solve a wide variety of problems. GAs are an example of mathematical technology transfer: by simulating evolution, one can solve optimization problems from a variety of sources. The principle of GAs is simple: imitate genetics and natural selection by a computer program. An algorithm is a series of steps for solving a problem. A genetic algorithm is a problem-solving method that uses genetics as its model of problem solving. Genetic algorithms are search algorithms based on the mechanics of natural selection and natural genetics. Algorithms are nothing but step-by-step procedures to find solutions to problems. A hybrid genetic algorithm has been designed by combining a variant of an already existing crossover operator with these heuristics.
Author Deka, Paresh Chra
Author_xml – sequence: 1
  givenname: Paresh Chra
  surname: Deka
  fullname: Deka, Paresh Chra
BookMark eNpVkM1PwzAMxYP4EGzsCtcdx6EQO2maHKcJCtIkDnxco7RLWVmXjKQM7b-n1SYhTpbl9_Oz34CcOO8sIddAbwEp3KlMUo6Kp8CRJekRGfy1x2TUjQGYZMiYgjMyAECBkIHk52QU4yelFDGFTPELcpVbZ9u6HE-bDx_qdrkeT_LpzSU5rUwT7ehQh-Tt4f519pjMn_On2XSe1J0XTxZoC5EKWaLCkgnbOQubpVWhUJmM0qowFbPVQjBEIy2Vsih6oOTCMImGDQnf790E__VtY6tt4f2qtK4NpimXZtPaEHWqRAZK6e4FDcg7bLLHVs5vbaM3oV6bsNMHQK9aCoy-yPesk-Z7ae0qH9bmx4dmoVuza3yognFlHXvHqIHqPlz9L1yd6m13QO0dsl-CqWyT
ContentType Book Chapter
Copyright 2020 by Taylor & Francis Group, LLC
2020
Copyright_xml – notice: 2020 by Taylor & Francis Group, LLC
– notice: 2020
DBID FFUUA
DEWEY 624.0285/631
DOI 10.1201/9780429451423-5
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 0429451423
9780429451423
9781523146901
1523146907
9780429836664
042983666X
Edition 1
EndPage 132
ExternalDocumentID EBC5967199_184_124
chapter_kt0130S8V7
10_1201_9780429451423_5_version2
GroupedDBID 20A
38.
5~G
AABBV
ABARN
ABEQL
ABQPQ
ADLWY
ADVEM
ADYHE
AERYV
AESSL
AEUHU
AEZWE
AFIZQ
AFOJC
AHTWU
AHWGJ
AIENH
AIXXW
AJFER
AKSCQ
ALMA_UNASSIGNED_HOLDINGS
ALPYH
AXTGW
BBABE
BCIGI
BMO
BQVRA
CUWXE
CZZ
DYXOI
EBATF
GEN
GEOUK
IHRAH
INALI
JBKUH
JEIOI
JTX
KGDJW
MPXOF
MTFXQ
NEQ
NEV
TD3
UCHLF
FFUUA
ID FETCH-LOGICAL-i1424-d2eb6568c292c36e9786e75fb929a700fbaf3efd6322a8e088bbb656c46a382a3
ISBN 9781138323391
113832339X
IngestDate Sat Aug 16 21:44:04 EDT 2025
Wed Apr 16 04:34:59 EDT 2025
Fri Apr 04 03:33:20 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Genetic Operations
GP System
Executional Steps
Fitness Measure
Vice Versa
Hybrid GA
Genetic Operators
SVM Model
Bandit Problem
Crossover Probability
Crossover Mask
GA
Phenotypic Representation
Crossover Operation
RBF Kernel
Schema Theorem
Fitness Function
Hybrid Neuro Fuzzy System
GP
Single Point Crossover
Preparatory Steps
Parallel GA
Permutation Encoding
Mutation Probability
Real Code GA
LCCallNum TA153
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i1424-d2eb6568c292c36e9786e75fb929a700fbaf3efd6322a8e088bbb656c46a382a3
OCLC 1126217184
PQID EBC5967199_184_124
PageCount 32
ParticipantIDs proquest_ebookcentralchapters_5967199_184_124
knovel_primary_chapter_kt0130S8V7
informaworld_taylorfrancisbooks_10_1201_9780429451423_5_version2
PublicationCentury 2000
PublicationDate 2020
2019
PublicationDateYYYYMMDD 2020-01-01
2019-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle A Primer on Machine Learning Applications in Civil Engineering
PublicationYear 2020
2019
Publisher CRC Press
Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: CRC Press
– name: Taylor & Francis
– name: Taylor & Francis Group
SSID ssj0002251794
ssib047252433
Score 1.5830711
Snippet J. H. Holland described how to apply the principles of natural selection to optimization problems and built the first genetic algorithms (GAs). The power of...
SourceID proquest
knovel
informaworld
SourceType Publisher
StartPage 101
SubjectTerms Civil Engineering & Construction Materials
General Engineering & Project Administration
General References
TableOfContents 5.1 Introduction 5.2 Classification of GA 5.3 Genetic Programming Bibliography
Title Genetic Algorithm (GA)
URI https://www.taylorfrancis.com/books/9780429451423/chapters/10.1201/9780429451423-5
https://app.knovel.com/hotlink/pdf/rcid:kpPMLACE0D/id:kt0130S8V7/primer-machine-learning/genetic-algorithm-ga?kpromoter=Summon
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5967199&ppg=124&c=UERG
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZKuSAuVKUiFFAqcQBVhl3b-7oRRS0VUirUl3qzbO-4jZImVbrkwK9n_MjmUSQEXFarlXczO3bsb76d-UzIe-CJsrwStKp1RoVSNdWgGDVpYixj2hjr-I7BaX5yKb5dZ9fLHT99dUmjP5mfv60r-ZdexWvYr65K9i96tn0oXsBz7F88Yg_jcQP8rtOsIb348LuT5p85un_gUyJhoZZ6E8DlSqJ4fzgfjlfFB1sACyMVkCTG3bdOa0CtjiKnSu0kXXvjm-ls2NzeeVqht-APIl3Akg26oH_WX0vuCHFkmmKgyjgPG2fFuSyNt4VlMQ005KMZl3mlf69jxCqB8Itxmi0XlzblzwUb2FautZSZnAdaEFfRJ0WJE9VTXI6PBi1NxrykmvB7PEUbo27S0uao2IRP_7xhx4b-LKKM0WQ6h_GjhdejiYsX5LmrMOm60g-0fYdswWSX7EVXd1tXdz987X18SS6Pjy76JzRuWkGHrmiQ1gw0YuTSsIoZngNalEORWY04VBVJYjX-N8DWOc6kqgSc5LV2NxiRK14yxffI9mQ6gVekazFULVSpgYEVwLgStRWFyZmtEwbCdMiX1beTjed4bNiQxY3LB_knr3fIQfCIvA_iJtKEd5ejxn3TPi-vig6hC2dJ_wU_pg3Hlg8yq_IirSqZlgJ_Tbz-f7P2ybPl2H1DtpvZD3iL4K_R7-IA-QX6flMT
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=A+Primer+on+Machine+Learning+Applications+in+Civil+Engineering&rft.au=Deka%2C+Paresh+Chra&rft.atitle=Genetic+Algorithm+%28GA%29&rft.date=2020-01-01&rft.pub=CRC+Press&rft.isbn=9781138323391&rft.spage=101&rft.epage=132&rft_id=info:doi/10.1201%2F9780429451423-5&rft.externalDocID=10_1201_9780429451423_5_version2
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcontent.knovel.com%2Fcontent%2FThumbs%2Fthumb14383.gif
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5967199-l.jpg