Intelligent automatic operational modal analysis: Application to a suspension bridge

A new paradigm for the automatic output-only modal identification of linear structures under ambient vibrations is presented, namely the intelligent automatic operational modal analysis (i-AOMA). It exploits the covariance-based stochastic subspace (SSI-cov) algorithm for the output-only identificat...

Full description

Saved in:
Bibliographic Details
Published inBridge Maintenance, Safety, Management, Digitalization and Sustainability pp. 3397 - 3404
Main Authors Rosso, M.M., Marano, G.C., Aloisio, A., Quaranta, G.
Format Book Chapter
LanguageEnglish
Published CRC Press 2024
Edition1
Online AccessGet full text
ISBN1032775602
9781032775609
1032770406
9781032770406
DOI10.1201/9781003483755-402

Cover

Abstract A new paradigm for the automatic output-only modal identification of linear structures under ambient vibrations is presented, namely the intelligent automatic operational modal analysis (i-AOMA). It exploits the covariance-based stochastic subspace (SSI-cov) algorithm for the output-only identification of the modal parameters and its workflow consists of two main phases. Initially, quasi-random samples of the control parameters for the SSI-cov algorithm are generated. Once the SSI-cov algorithm is performed for each sample, the corresponding stabilization diagrams are processed in order to prepare a database for training the intelligent core of the i-AOMA method. This is a machine learning (ML) technique (namely a random forest algorithm) that predicts which combination of the control parameters for the SSI-cov algorithm is able to provide good modal estimates. Afterward, new quasi-random samples of the control parameters for the SSI-cov algorithm are generated repeatedly until a statistical convergence criterion is achieved. If the generic sample is classified as feasible by the intelligent core of the i-AOMA method, then the SSI-cov algorithm is performed. Hence, stable modal results are distilled from the stabilization diagrams and relevant statistics are also computed to evaluate the uncertainty level due to the variability of the control parameters. The proposed i-AOMA method is finally applied to estimate the modal features of a suspension bridge structure, the Hardanger Bridge in Norway, to demonstrate the feasibility of the proposed methodology.
AbstractList A new paradigm for the automatic output-only modal identification of linear structures under ambient vibrations is presented, namely the intelligent automatic operational modal analysis (i-AOMA). It exploits the covariance-based stochastic subspace (SSI-cov) algorithm for the output-only identification of the modal parameters and its workflow consists of two main phases. Initially, quasi-random samples of the control parameters for the SSI-cov algorithm are generated. Once the SSI-cov algorithm is performed for each sample, the corresponding stabilization diagrams are processed in order to prepare a database for training the intelligent core of the i-AOMA method. This is a machine learning (ML) technique (namely a random forest algorithm) that predicts which combination of the control parameters for the SSI-cov algorithm is able to provide good modal estimates. Afterward, new quasi-random samples of the control parameters for the SSI-cov algorithm are generated repeatedly until a statistical convergence criterion is achieved. If the generic sample is classified as feasible by the intelligent core of the i-AOMA method, then the SSI-cov algorithm is performed. Hence, stable modal results are distilled from the stabilization diagrams and relevant statistics are also computed to evaluate the uncertainty level due to the variability of the control parameters. The proposed i-AOMA method is finally applied to estimate the modal features of a suspension bridge structure, the Hardanger Bridge in Norway, to demonstrate the feasibility of the proposed methodology.
Author Aloisio, A.
Rosso, M.M.
Marano, G.C.
Quaranta, G.
Author_xml – sequence: 1
  givenname: M.M.
  surname: Rosso
  fullname: Rosso, M.M.
– sequence: 2
  givenname: G.C.
  surname: Marano
  fullname: Marano, G.C.
– sequence: 3
  givenname: A.
  surname: Aloisio
  fullname: Aloisio, A.
– sequence: 4
  givenname: G.
  surname: Quaranta
  fullname: Quaranta, G.
BookMark eNpVkM1KAzEUhSMqaGsfwF1eYDQ_k8nEXSn-DBTc1PWQZJISTJMhSZW-vTMqiJt7zrkHLpdvAS5CDAaAW4zuMEH4XvAWI0TrlnLGqhqRM7D4W5zPgRLOWYPIFVjl7BRijGNBBL8Guy4U473bm1CgPJZ4kMVpGEeTJhOD9PAQh2nKyZ6yyw9wPY7e6e8WlgglzMc8mpDnrJIb9uYGXFrps1n96hK8PT3uNi_V9vW526y3lcO0KRVtONFM1sJYjRixhAmFtFTYUNsKy0jdDnXDqRDKtg01zSCwYYpwSznSXNAl6H7uumBjOsjPmPzQF3nyMdkkg3ZZxfiee4z6GVX_D1U_oeo_TJofJ_QLPrNjMg
ContentType Book Chapter
Copyright 2024 Taylor & Francis Group, London, UK
Copyright_xml – notice: 2024 Taylor & Francis Group, London, UK
DOI 10.1201/9781003483755-402
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISBN 1003483755
9781040186572
1040186572
9781003483755
9781040186497
1040186491
Edition 1
Editor Frangopol, Dan M.
Schmidt, Jacob Wittrup
Jensen, Jens Sandager
Editor_xml – sequence: 1
  givenname: Jens Sandager
  surname: Jensen
  fullname: Jensen, Jens Sandager
– sequence: 2
  givenname: Dan M.
  surname: Frangopol
  fullname: Frangopol, Dan M.
– sequence: 3
  givenname: Jacob Wittrup
  surname: Schmidt
  fullname: Schmidt, Jacob Wittrup
EndPage 3404
ExternalDocumentID 10_1201_9781003483755_402_version2
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
CZZ
ID FETCH-LOGICAL-i136t-3672c5a49efc052f259b0cab1e3f89f5248d467399bf863e6d91e5b27f370c793
ISBN 1032775602
9781032775609
1032770406
9781032770406
IngestDate Sat Sep 14 11:54:41 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i136t-3672c5a49efc052f259b0cab1e3f89f5248d467399bf863e6d91e5b27f370c793
PageCount 8
ParticipantIDs informaworld_taylorfrancisbooks_10_1201_9781003483755_402_version2
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Bridge Maintenance, Safety, Management, Digitalization and Sustainability
PublicationYear 2024
Publisher CRC Press
Publisher_xml – name: CRC Press
SSID ssib055719297
ssib055847596
ssib056301449
Score 1.7121596
Snippet A new paradigm for the automatic output-only modal identification of linear structures under ambient vibrations is presented, namely the intelligent automatic...
SourceID informaworld
SourceType Publisher
StartPage 3397
Title Intelligent automatic operational modal analysis: Application to a suspension bridge
URI https://www.taylorfrancis.com/books/9781003483755/chapters/10.1201/9781003483755-402
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfKuCAuIEB8ywduU0oax0m8G1TAQCtIUyd6i-zYRpNGM63pDvwT_Mu8Zyex2yEhEJeodiyr7s99X37vZ0JepaqUqbFVkhaNSnJtTCKs5olMKwnmP9gkCmuHF5-L47P804qvJpOfUdbStlPT5sdv60r-BVXoA1yxSvYvkB0nhQ74DPjCExCG557xuxtmHeiIsNRqIZHxAWkzfDBZWuN5_kNii5Mr59_wepC-6tInbA61U5geO0bWT0FruvDpYrqYhng1qDTX-2E6H3vfXLRYme7Ey9iJWaKAlvSD4x35cWT_7A7ltms9WWx7aa6GgOT3VjvqAs-T4mKW4XwdrWR5uNluLjHnHtq-1iwOW2T5XthifjrfSTLx_iyy-5UlyJVYpjLmM3h7_cxyf1_xDdmfuTsH3CwpQ6J8ztE7DopuTD9ExwdG1ztjaxhbX_sgJej0W2UFYvP2l9XXk5NBQHFegkEcjl05njHzwFeIXGvgoAosIBxXMjbAtsx6krHoZWjDe9Gfu8OXe31jIXtkupEZtLxH7mJpDMWaFVjofTIx6wdkGeFKR1xphCt1uNIB1yMaoUq7lkoaUKUe1Yfk7P275fw46e_qSM5nrOgSVpRZw2UujG1SnlnwqlXaSDUzzFbC8iyvNOhkMIeVrQpmCi1mhqustKxMG1ASj8jBul2bx4QKVeagSRplbZ6zworUaiGtLHSldaWaJ-Rt_DvUnQttWX8PDf4dN_WfAX76PyZ5Ru6Erf2cHHRXW_MCbNROvex3zi8-SohP
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Bridge+Maintenance%2C+Safety%2C+Management%2C+Digitalization+and+Sustainability&rft.au=Rosso%2C+M.M.&rft.au=Marano%2C+G.C.&rft.au=Aloisio%2C+A.&rft.au=Quaranta%2C+G.&rft.atitle=Intelligent+automatic+operational+modal+analysis%3A+Application+to+a+suspension+bridge&rft.date=2024-01-01&rft.pub=CRC+Press&rft.isbn=9781032770406&rft.spage=3397&rft.epage=3404&rft_id=info:doi/10.1201%2F9781003483755-402&rft.externalDocID=10_1201_9781003483755_402_version2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781032775609/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781032775609/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781032775609/sc.gif&client=summon&freeimage=true