Algorithm Selection across Algorithm Configurators A Case Study on Multi-objective Optimization

The present work utilizes Algorithm Selection for automatically specifying the parameter tuning method for a given tuning task. The idea of parameter tuning is motivated by the premature algorithm designs and their sub-optimal or poor parameter value choices. The decisions both on the designs and th...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE Symposium Series on Computational Intelligence (SSCI) pp. 1 - 5
Main Author Misir, Mustafa
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2022
Subjects
Online AccessGet full text
DOI10.1109/SSCI51031.2022.10022231

Cover

Abstract The present work utilizes Algorithm Selection for automatically specifying the parameter tuning method for a given tuning task. The idea of parameter tuning is motivated by the premature algorithm designs and their sub-optimal or poor parameter value choices. The decisions both on the designs and the parameter values are largely given based on the experiences of the developers or the target problem domain experts after a limited number of trials. While the existing tuning approaches tend to offer improvements over the default parameter values for varying algorithms, they can be computationally expensive. Additionally, there is no a single, ultimate parameter tuning strategy. These facts suggest to choose the most effective tuning algorithm for a specific scenario. This study utilizes an existing Algorithm Selection system to address this problem. The idea is to allocate potentially the most effective tuning method for a given task instead of relying on a single tuner. On that note, a group of well-known parameter configuration approaches are accommodated as the candidate methods to tune NSGA-II for solving a suite of multi-objective optimization benchmarks, refer-encing a recent article. The computational analysis revealed that Algorithm Selection outperforms those constituent parameter tuning methods when each is used as a standalone manner. Additionally, the dis/-similarity analysis carried on the problem instances / benchmarks give hints on the diversity level of the benchmarks. Furthermore, a similar inspection reported on the parameter tuning procedures show the behavioural resemblance between them.
AbstractList The present work utilizes Algorithm Selection for automatically specifying the parameter tuning method for a given tuning task. The idea of parameter tuning is motivated by the premature algorithm designs and their sub-optimal or poor parameter value choices. The decisions both on the designs and the parameter values are largely given based on the experiences of the developers or the target problem domain experts after a limited number of trials. While the existing tuning approaches tend to offer improvements over the default parameter values for varying algorithms, they can be computationally expensive. Additionally, there is no a single, ultimate parameter tuning strategy. These facts suggest to choose the most effective tuning algorithm for a specific scenario. This study utilizes an existing Algorithm Selection system to address this problem. The idea is to allocate potentially the most effective tuning method for a given task instead of relying on a single tuner. On that note, a group of well-known parameter configuration approaches are accommodated as the candidate methods to tune NSGA-II for solving a suite of multi-objective optimization benchmarks, refer-encing a recent article. The computational analysis revealed that Algorithm Selection outperforms those constituent parameter tuning methods when each is used as a standalone manner. Additionally, the dis/-similarity analysis carried on the problem instances / benchmarks give hints on the diversity level of the benchmarks. Furthermore, a similar inspection reported on the parameter tuning procedures show the behavioural resemblance between them.
Author Misir, Mustafa
Author_xml – sequence: 1
  givenname: Mustafa
  surname: Misir
  fullname: Misir, Mustafa
  email: mustafa.misir@dukekunshan.edu.cn
  organization: Duke Kunshan University,Division of Natural and Applied Sciences,Kunshan,China
BookMark eNpFT1tLwzAYjaAPOvcPBPMHWvMl6SWPo3gZTPZQfS5p8mVGuma0qTB_vR1TfDkHzg3ODbnsQ4-E3ANLAZh6qOtqnQETkHLGeQpsRi7ggixVUUKeZ7Is8lJdk2bV7cLg48ee1tihiT70VJshjCP9t6rQO7-bBh3DMOu00iPSOk72SOf469RFn4T281T_Qro9RL_33_q0dUuunO5GXP7ygrw_Pb5VL8lm-7yuVpvEg5AxwZy3gNw5BU5YjkzyUgnkhctLY7RmPGNMaCuZ1TYz3IJpCylBKMtMBigW5O686xGxOQx-r4dj8_db_ADX21QS
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSCI51031.2022.10022231
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665487689
1665487682
EndPage 5
ExternalDocumentID 10022231
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i134t-e62b1e2ff91f3d2e042893e27f68ccaa025003ad40dad5c2d1cb744139d0c51e3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:52 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i134t-e62b1e2ff91f3d2e042893e27f68ccaa025003ad40dad5c2d1cb744139d0c51e3
PageCount 5
ParticipantIDs ieee_primary_10022231
PublicationCentury 2000
PublicationDate 2022-Dec.-4
PublicationDateYYYYMMDD 2022-12-04
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2022 IEEE Symposium Series on Computational Intelligence (SSCI)
PublicationTitleAbbrev SSCI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8181167
Snippet The present work utilizes Algorithm Selection for automatically specifying the parameter tuning method for a given tuning task. The idea of parameter tuning is...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms algorithm configuration
algorithm selection
Benchmark testing
Data mining
Feature extraction
Indexes
Inspection
multi-objective optimization
parameter tuning
Task analysis
Tuners
Title Algorithm Selection across Algorithm Configurators A Case Study on Multi-objective Optimization
URI https://ieeexplore.ieee.org/document/10022231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6_pkjTNmqMUxxScwhzsNvJzTt0q0h70rzdJO4eC4C0koS3vQb73mu97D4BLK7kzinGUZxojlqUcSR-IIw9WIZ53XMdeh3cjPpyw22k2bcXqUQtjrY3kM5uEYbzLN6Wuw6-yHonSzaCa3u7nvBFrtZwtgkVvPC5uQoG4kPZRmqx3_-ibEmFjsAtG6xc2bJGXpK5Uoj9_1WL89xftge5GoQcfvrFnH2zZ1QGYXb3OS5_sPy3hOLa38TaHMuIg3CyFJyzmdbxe9_Ow8DgGA53wA_rtUZCLSvXcHITw3h8py1ar2QWTwfVjMURtAwW0ICmrkOVUEUudE8SlhtqQH4nU0r7jufecDPEPTqVh2EiTaWqIVn0fH6XCYJ0Rmx6Czqpc2SMAiZDY5cKoXIaqYVS4HEuLjdNKCsbcMegG68zemhoZs7VhTv6YPwU7wUmRGMLOQKd6r-25h_dKXUS3fgGoo6cQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3pSceJvc_CaLmnTrjnKcGy6TWEb7Fbyc07dKtIe9K83STuHguAtJKEt70G-95rvew-Aa80TowRNUBpLjGgcJYjbQBxZsHLxvEmk73U4HCW9Kb2bxbNarO61MFprTz7TgRv6u3yVy9L9KmsRL910quntmFIaV3KtmrVFMGuNx52-KxHnEr8wDNb7f3RO8cDR3QOj9SsrvshLUBYikJ-_qjH--5v2QXOj0YOP3-hzALb06hBkN6_z3Kb7T0s49g1urNUh90gIN0vuCYt56S_Y7TzsWCSDjlD4Ae12L8lFuXiujkL4YA-VZa3WbIJp93bS6aG6hQJakIgWSCehIDo0hhETqVC7DIlFOmybJLW-4y4CwhFXFCuuYhkqIkXbRkgRU1jGREdHoLHKV_oYQMI4NilTIuWubljITIq5xspIwRml5gQ0nXWyt6pKRrY2zOkf81dgpzcZDrJBf3R_BnadwzxNhJ6DRvFe6gsL9oW49C7-ApTKql0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+Symposium+Series+on+Computational+Intelligence+%28SSCI%29&rft.atitle=Algorithm+Selection+across+Algorithm+Configurators+A+Case+Study+on+Multi-objective+Optimization&rft.au=Misir%2C+Mustafa&rft.date=2022-12-04&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FSSCI51031.2022.10022231&rft.externalDocID=10022231