Towards a Process Model to Enable Domain Experts to Become Citizen Data Scientists for Industrial Applications

It is often a problem to combine domain knowledge and data science knowledge in applications of industrial data analytics. Data scientists usually spend a lot of time to understand the domain to develop an application while domain experts lack the skills to interpret results of underlying mathematic...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS) pp. 1 - 6
Main Authors Merkelbach, Silke, Von Enzberg, Sebastian, Kuhn, Arno, Dumitrescu, Roman
Format Conference Proceeding
LanguageEnglish
Published IEEE 24.05.2022
Subjects
Online AccessGet full text
DOI10.1109/ICPS51978.2022.9816871

Cover

Abstract It is often a problem to combine domain knowledge and data science knowledge in applications of industrial data analytics. Data scientists usually spend a lot of time to understand the domain to develop an application while domain experts lack the skills to interpret results of underlying mathematical models. This leads to difficulties when adapting to changes, handling issues and transfer to similar scenarios, and thus to a lack of acceptance of data analytics applications in industrial companies. Based on the Cross Industry Standard Process for Data Mining (CRISP-DM), we propose a novel process model which integrates training of domain experts to enable them to become citizen data scientists to independently develop and implement data analytics applications. We qualitatively evaluated our process model on a storage location assignment problem in the warehouse of a manufacturer of high-end domestic appliances.
AbstractList It is often a problem to combine domain knowledge and data science knowledge in applications of industrial data analytics. Data scientists usually spend a lot of time to understand the domain to develop an application while domain experts lack the skills to interpret results of underlying mathematical models. This leads to difficulties when adapting to changes, handling issues and transfer to similar scenarios, and thus to a lack of acceptance of data analytics applications in industrial companies. Based on the Cross Industry Standard Process for Data Mining (CRISP-DM), we propose a novel process model which integrates training of domain experts to enable them to become citizen data scientists to independently develop and implement data analytics applications. We qualitatively evaluated our process model on a storage location assignment problem in the warehouse of a manufacturer of high-end domestic appliances.
Author Merkelbach, Silke
Von Enzberg, Sebastian
Dumitrescu, Roman
Kuhn, Arno
Author_xml – sequence: 1
  givenname: Silke
  surname: Merkelbach
  fullname: Merkelbach, Silke
  email: silke.merkelbach@iem.fraunhofer.de
  organization: Research Department Product Engineering Fraunhofer Institute for Mechatronic Systems Design,Paderborn,Germany
– sequence: 2
  givenname: Sebastian
  surname: Von Enzberg
  fullname: Von Enzberg, Sebastian
  email: sebastian.von.enzberg@iem.fraunhofer.de
  organization: Research Department Product Engineering Fraunhofer Institute for Mechatronic Systems Design,Paderborn,Germany
– sequence: 3
  givenname: Arno
  surname: Kuhn
  fullname: Kuhn, Arno
  email: arno.kuehn@iem.fraunhofer.de
  organization: Research Department Product Engineering Fraunhofer Institute for Mechatronic Systems Design,Paderborn,Germany
– sequence: 4
  givenname: Roman
  surname: Dumitrescu
  fullname: Dumitrescu, Roman
  email: roman.dumitrescu@iem.fraunhofer.de
  organization: Research Department Product Engineering Fraunhofer Institute for Mechatronic Systems Design,Paderborn,Germany
BookMark eNotkM1KAzEURiPowlafQJC8QGtuMjOZWdZp1ULFQiu4KzeZOxCYJkMS8efpVezqW5zDWXwTdu6DJ8ZuQcwBRHO3bre7Ehpdz6WQct7UUNUaztgEqqosGq3F2yXz-_CBsUsc-TYGSynx59DRwHPgK49mIL4MR3Serz5Hijn9gXuy4Ui8ddl9k-dLzMh31pHPLv0afYh87bv3lKPDgS_GcXAWsws-XbGLHodE16edsteH1b59mm1eHtftYjNzoFSeyQIloDG6NGgkKmOh6rQ2JShhetuVRoA1he27WpZQ60pWhgCpg0b1shBqym7-u46IDmN0R4xfh9MF6gfjllhM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPS51978.2022.9816871
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 166549770X
9781665497701
EndPage 6
ExternalDocumentID 9816871
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-24a21abb75bab2a3bc16d77b5130bfcd5b01cb4cfd825187626be1aed193f2403
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:47 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-24a21abb75bab2a3bc16d77b5130bfcd5b01cb4cfd825187626be1aed193f2403
PageCount 6
ParticipantIDs ieee_primary_9816871
PublicationCentury 2000
PublicationDate 2022-May-24
PublicationDateYYYYMMDD 2022-05-24
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-24
  day: 24
PublicationDecade 2020
PublicationTitle 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS)
PublicationTitleAbbrev ICPS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8130287
Snippet It is often a problem to combine domain knowledge and data science knowledge in applications of industrial data analytics. Data scientists usually spend a lot...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
citizen data scientist
Conferences
Data models
Data science
domain experts
Home appliances
Mathematical models
process model
Training
Title Towards a Process Model to Enable Domain Experts to Become Citizen Data Scientists for Industrial Applications
URI https://ieeexplore.ieee.org/document/9816871
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ08qm_ibHDzarsnSpDnqfjCFycANdhtJmkDRteKyy_56k6xuKh68hSbQkkf63sv7vvcBcMuFSQ3KaJRz7BIUQ2iUybQbUZohYro0yZW_7xg_09GMPM3TeQPc7bgwWusAPtOxH4Zafl6ptb8q63AvEuEJ4wcso1uuVk36RQnvPPYmL56G6QFbGMf14h-qKcFpDI_A-Ot1W6zIa7y2MlabX50Y__s9x6C9p-fByc7xnICGLlugnAYA7AoKWIP_odc5e4O2goNAkIL9aimKEobuxnblJx5c8rnUsFfYYqNL2BdWwHDarbP-CrqAFu61PeD9t2J3G8yGg2lvFNViClHh0lAbYSIwElKyVAqJRVcqRHPGZOqcmDQqT2WClCTK5J7M6v-RVGokdO4iPOOb9p2CZlmV-gxAroRiKSbaIE5YJnnCDeWpcdGjZpLpc9Dye7V43_bLWNTbdPH340tw6O3lK_KYXIGm_Vjra-forbwJFv4E_t6rTw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6IHvSkBoy_7cGjG1tpu_Wo_AgoEBIh4Ubark2IshkpF_562zJBjQdvzdpkS1-6917f970PgDvGNdFxSoOMIZugaEyDVJBGQGkaY92gUSbdfcdgSLsT_DQl0wq433JhlFIefKZCN_S1_KyQK3dVVmdOJMIRxvcJxphs2Fol7TeOWL3XHL04IqaDbCEUlst_6KZ4t9E5AoOvF27QIq_hyohQrn_1YvzvFx2D2o6gB0db13MCKiqvgnzsIbBLyGEJ_4dO6ewNmgK2PUUKtooFn-fQ9zc2SzfxaNPPhYLNuZmvVQ5b3HDoz7ux9l9CG9LCnboHfPhW7q6BSac9bnaDUk4hmNtE1AQIcxRzIRIiuEC8IWRMsyQRxLoxoWVGRBRLgaXOHJ3V_SWpUDFXmY3xtGvbdwr28iJXZwAyyWVCEFY6ZjhJBYuYpoxoGz-qRCTqHFTdXs3eNx0zZuU2Xfz9-BYcdMeD_qzfGz5fgkNnO1efR_gK7JmPlbq2bt-IG2_tTyInrpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+5th+International+Conference+on+Industrial+Cyber-Physical+Systems+%28ICPS%29&rft.atitle=Towards+a+Process+Model+to+Enable+Domain+Experts+to+Become+Citizen+Data+Scientists+for+Industrial+Applications&rft.au=Merkelbach%2C+Silke&rft.au=Von+Enzberg%2C+Sebastian&rft.au=Kuhn%2C+Arno&rft.au=Dumitrescu%2C+Roman&rft.date=2022-05-24&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICPS51978.2022.9816871&rft.externalDocID=9816871