MR. TOMP : Inversion of the Modulo Radon Transform (MRT) via Orthogonal Matching Pursuit (OMP)

In the recent years, practitioners in the area of tomography have proposed high dynamic range (HDR) solutions that are inspired by the multi-exposure fusion strategy in computational photography. To this end, multiple Radon Transform projections are acquired at different exposures that are algorithm...

Full description

Saved in:
Bibliographic Details
Published inProceedings - International Conference on Image Processing pp. 3748 - 3752
Main Authors Beckmann, Matthias, Bhandari, Ayush
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.10.2022
Subjects
Online AccessGet full text
ISSN2381-8549
DOI10.1109/ICIP46576.2022.9897428

Cover

Abstract In the recent years, practitioners in the area of tomography have proposed high dynamic range (HDR) solutions that are inspired by the multi-exposure fusion strategy in computational photography. To this end, multiple Radon Transform projections are acquired at different exposures that are algorithmically fused to facilitate HDR re-construction. A single-shot alternative to multi-exposure fusion approach has been proposed in our recent line of work which is based on the Modulo Radon Transform (MRT). In this case, Radon Transform projections are folded via modulo non-linearity. This folding allows HDR values to be mapped into the dynamic range of the sensor and, thus, avoids saturation or clipping. The folded measurements are then mapped back to their ambient range using algorithms. The main goal of this paper is to introduce a novel, Fourier domain recovery method, namely, the OMP-FBP method, which is based on the Orthogonal Matching Pursuit (OMP) algorithm and Filtered Back Projection (FBP) formula. The proposed OMP-FBP method offers several advantages; it is agnostic to the modulo threshold or the number of folds, can handle much lower sampling rates than previous approaches and is empirically stable to noise and outliers. Computer simulations as well as hardware experiments in the paper validate the effectivity of the OMP-FBP recovery method.
AbstractList In the recent years, practitioners in the area of tomography have proposed high dynamic range (HDR) solutions that are inspired by the multi-exposure fusion strategy in computational photography. To this end, multiple Radon Transform projections are acquired at different exposures that are algorithmically fused to facilitate HDR re-construction. A single-shot alternative to multi-exposure fusion approach has been proposed in our recent line of work which is based on the Modulo Radon Transform (MRT). In this case, Radon Transform projections are folded via modulo non-linearity. This folding allows HDR values to be mapped into the dynamic range of the sensor and, thus, avoids saturation or clipping. The folded measurements are then mapped back to their ambient range using algorithms. The main goal of this paper is to introduce a novel, Fourier domain recovery method, namely, the OMP-FBP method, which is based on the Orthogonal Matching Pursuit (OMP) algorithm and Filtered Back Projection (FBP) formula. The proposed OMP-FBP method offers several advantages; it is agnostic to the modulo threshold or the number of folds, can handle much lower sampling rates than previous approaches and is empirically stable to noise and outliers. Computer simulations as well as hardware experiments in the paper validate the effectivity of the OMP-FBP recovery method.
Author Bhandari, Ayush
Beckmann, Matthias
Author_xml – sequence: 1
  givenname: Matthias
  surname: Beckmann
  fullname: Beckmann, Matthias
  email: research@mbeckmann.de
  organization: University of Bremen,Center for Industrial Mathematics,Bremen,Germany,28359
– sequence: 2
  givenname: Ayush
  surname: Bhandari
  fullname: Bhandari, Ayush
  email: a.bhandari@imperial.ac.uk
  organization: Imperial College London,Dept. of Electrical and Electronic Engineering,UK,SW72AZ
BookMark eNotkE1Lw0AYhFdRsK3-AkH22B4S9yubXW8S_Ag0tJR4tWw3b9qVdlc2aaH_3oA9DTOHh5kZoxsfPCD0RElKKdHPZVEuhcxymTLCWKqVzgVTV2hMpcyElozk12jEuKKJGvwdGnfdDyGMUE5H6LtapbheVEv8gkt_gti54HFocb8DXIXmuA94ZZohq6PxXRviAU-rVT3DJ2fwIva7sA3e7HFlertzfouXx9gdXY-nA3R2j25bs-_g4aIT9PX-VhefyXzxURav88RRzvtkaGeFaBVoAKNASbZRmc55BmJjGyoYM8SCbowcpinNrOFioy23wjS8NYRP0OM_1wHA-je6g4nn9eUL_gchI1Qz
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICIP46576.2022.9897428
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 1665496207
9781665496209
EISSN 2381-8549
EndPage 3752
ExternalDocumentID 9897428
Genre orig-research
GrantInformation_xml – fundername: UK Research and Innovation
  funderid: 10.13039/100014013
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i133t-238c44f8e9eea8e862b859735e4bcd1422a0ce9da6428892ca34b9c3c4ad3fa03
IEDL.DBID RIE
IngestDate Wed Aug 27 02:19:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-238c44f8e9eea8e862b859735e4bcd1422a0ce9da6428892ca34b9c3c4ad3fa03
PageCount 5
ParticipantIDs ieee_primary_9897428
PublicationCentury 2000
PublicationDate 2022-Oct.-16
PublicationDateYYYYMMDD 2022-10-16
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-16
  day: 16
PublicationDecade 2020
PublicationTitle Proceedings - International Conference on Image Processing
PublicationTitleAbbrev ICIP
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020131
Score 2.2078736
Snippet In the recent years, practitioners in the area of tomography have proposed high dynamic range (HDR) solutions that are inspired by the multi-exposure fusion...
SourceID ieee
SourceType Publisher
StartPage 3748
SubjectTerms Computational imaging
computer tomography
Dynamic range
Heuristic algorithms
high dynamic range
Matching pursuit algorithms
Photography
Radon
Radon transform and sampling theory
Tomography
Transforms
Title MR. TOMP : Inversion of the Modulo Radon Transform (MRT) via Orthogonal Matching Pursuit (OMP)
URI https://ieeexplore.ieee.org/document/9897428
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG6Akyd8YHynBw-QuFHabrZeiQRMJgsZCSdJX1OiYQY2D_71tmNgNB68LU3WLW2677F-vwJwzS0EEBxgD6c96lHTI3bNpcwLkOaCuPC1dH5H9BgOp_RhFsxq4GaXhTHGlJvPjO8uy3_5OlOFs8q6nFn2i1kd1G9ZuMlq7cSVqxtTJYB7iHdH_VFMQ0umrQTE2K_u_HGESokggyaIts_ebBx59Ytc-urzV1nG_77cPmh9Z_VgvEOhA1Azy0PQrMglrJbu-gg8RRMfJuMohnfQFdcobTKYpdAyQBhlunjL4ERo25ZsuSxsR5OkAz8WAo5X-Uv27Fg7jOzH29lWMC5W62KRw7bttNMC08F90h961eEK3sLK0tyzUK0oTZnhxghmrLCRzIoLEhgqlXbOkEDKcC2cQGEcK0Go5IooKjRJBSLHoLHMluYEQBVIRhDX2ko9KlEoU4koMVgjlPIwoKfgyA3X_H1TP2NejdTZ383nYM9NmcOHXngBGvmqMJcW-HN5Vc74F-3xqvo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwHG4QD3pCBePbHjxA4ka3dsvqlUhAGSxkJJwkfU2JhhnYPPjX246B0XjwtjRZt7Tpvsf6_QrADdUQgF3PtdzEIRZRDtZrLgksD0nKsAlfc-N3hEO_NyEPU29aAbfbLIxSqth8pmxzWfzLl6nIjVXWpoFmv26wA3Y9Qoi3Tmtt5ZWpHFNmgB1E2_1OPyK-ptNaBLquXd774xCVAkO6NRBunr7eOvJq5xm3xeevwoz_fb0D0PhO68Foi0OHoKIWR6BW0ktYLt5VHTyFYxvGozCCd9CU1yiMMpgmUHNAGKYyf0vhmEndFm_YLGyG47gFP-YMjpbZS_pseDsM9efbGFcwyperfJ7Bpu601QCT7n3c6Vnl8QrWXAvTzNJgLQhJAkWVYoHS0oYHWl5gTxEupPGGGBKKSmYkSkBdwTDhVGBBmMQJQ_gYVBfpQp0AKDweYESl1GKPcOTzhCOClSsRSqjvkVNQN8M1e19X0JiVI3X2d_M12OvF4WA26A8fz8G-mT6DFo5_AarZMleXmgZk_KqY_S8SZK5H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+on+Image+Processing&rft.atitle=MR.+TOMP+%3A+Inversion+of+the+Modulo+Radon+Transform+%28MRT%29+via+Orthogonal+Matching+Pursuit+%28OMP%29&rft.au=Beckmann%2C+Matthias&rft.au=Bhandari%2C+Ayush&rft.date=2022-10-16&rft.pub=IEEE&rft.eissn=2381-8549&rft.spage=3748&rft.epage=3752&rft_id=info:doi/10.1109%2FICIP46576.2022.9897428&rft.externalDocID=9897428