Parallel Tensor Train Rounding using Gram SVD
Tensor Train (TT) is a low-rank tensor representation consisting of a series of three-way cores whose dimensions specify the TT ranks. Formal tensor train arithmetic often causes an artificial increase in the TT ranks. Thus, a key operation for applications that use the TT format is rounding, which...
Saved in:
| Published in | Proceedings - IEEE International Parallel and Distributed Processing Symposium pp. 930 - 940 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.05.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-2075 |
| DOI | 10.1109/IPDPS53621.2022.00095 |
Cover
| Abstract | Tensor Train (TT) is a low-rank tensor representation consisting of a series of three-way cores whose dimensions specify the TT ranks. Formal tensor train arithmetic often causes an artificial increase in the TT ranks. Thus, a key operation for applications that use the TT format is rounding, which truncates the TT ranks subject to an approximation error guarantee. Truncation is performed via SVD of a highly structured matrix, and current rounding methods require careful orthogonalization to compute an accurate SVD. We propose a new algorithm for TT-Rounding based on the Gram SVD algorithm that avoids the expensive orthogonalization phase. Our algorithm performs less computation and can be parallelized more easily than existing approaches, at the expense of a slight loss of accuracy. We demonstrate that our implementation of the rounding algorithm is efficient, scales well, and consistently outperforms the existing state-of-the-art parallel implementation in our experiments. |
|---|---|
| AbstractList | Tensor Train (TT) is a low-rank tensor representation consisting of a series of three-way cores whose dimensions specify the TT ranks. Formal tensor train arithmetic often causes an artificial increase in the TT ranks. Thus, a key operation for applications that use the TT format is rounding, which truncates the TT ranks subject to an approximation error guarantee. Truncation is performed via SVD of a highly structured matrix, and current rounding methods require careful orthogonalization to compute an accurate SVD. We propose a new algorithm for TT-Rounding based on the Gram SVD algorithm that avoids the expensive orthogonalization phase. Our algorithm performs less computation and can be parallelized more easily than existing approaches, at the expense of a slight loss of accuracy. We demonstrate that our implementation of the rounding algorithm is efficient, scales well, and consistently outperforms the existing state-of-the-art parallel implementation in our experiments. |
| Author | Ballard, Grey Al Daas, Hussam Manning, Lawton |
| Author_xml | – sequence: 1 givenname: Hussam surname: Al Daas fullname: Al Daas, Hussam email: hussam.al-daas@stfc.ac.uk organization: Computational Mathematics Group,Rutherford Appleton Laboratory,Didcot, Oxfordshire,UK – sequence: 2 givenname: Grey surname: Ballard fullname: Ballard, Grey email: ballard@wfu.edu organization: Wake Forest University,Department of Computer Science,Winston-Salem,NC,USA – sequence: 3 givenname: Lawton surname: Manning fullname: Manning, Lawton email: mannlg15@wfu.edu organization: Wake Forest University,Department of Computer Science,Winston-Salem,NC,USA |
| BookMark | eNotj8FKw0AQQFdRsK39AhHyA6kzO9lJ9iitrYWCwUavZZLdSCTdyMYe_HsVvbx3e_Cm6iIMwSt1i7BABHu3LVfl3hBrXGjQegEA1pypuc0LZDZZgcD2XE3QEKQacnOlpuP4DqCBMjtRaSlR-t73SeXDOMSkitKF5Hk4BdeFt-Q0_nIT5ZjsX1fX6rKVfvTzf8_Uy_qhWj6mu6fNdnm_Szsk-kxRCmBpuNWNIwHROrfWobFsHGvApkZvkT0wELUmo9rUjoWgYXJsgGbq5q_bee8PH7E7Svw62OJnINP0DbwSQ5U |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IPDPS53621.2022.00095 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781665481069 1665481064 |
| EISSN | 1530-2075 |
| EndPage | 940 |
| ExternalDocumentID | 9820742 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i133t-1a806ac6f2cd3a0a22799d15965d6201cb1e916e06033f543b5bd6a30c63d6503 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:25:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i133t-1a806ac6f2cd3a0a22799d15965d6201cb1e916e06033f543b5bd6a30c63d6503 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9820742 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - IEEE International Parallel and Distributed Processing Symposium |
| PublicationTitleAbbrev | IPDPS |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020349 |
| Score | 1.817453 |
| Snippet | Tensor Train (TT) is a low-rank tensor representation consisting of a series of three-way cores whose dimensions specify the TT ranks. Formal tensor train... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 930 |
| SubjectTerms | Approximation algorithms Approximation error Distributed processing Iterative methods Matrix decomposition Scalability Tensors |
| Title | Parallel Tensor Train Rounding using Gram SVD |
| URI | https://ieeexplore.ieee.org/document/9820742 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP0CnDyhgvF3evBooaM_WM8ioolmETDcSNd1xqjDLOPiX-_XbaAxHrwtS5a1a9b3ve197wFcSD4wdmhTaq0NqZBpQEMtBB2KRBmXSg8TXm3xoCZzcbeQiwZcbnthnHOl-Mz1_GH5Lz9Z2bX_VNbXCFdI5ZrQHIaq6tXakivvs1J36ARM92-jUTSVuDt7DjgoTTl9hMSPBJUSQMZtuN_cutKNvPbWRdyzn79cGf87tl3ofrfqkWgLQnvQcNk-tDdZDaR-dTtAI5P72JQ3MkPiusrJzGdDkEefqoQXEq9_fyY3uXkn06dRF-bj69nVhNZRCfQFSWZBAxMyZaxKBzbhhhnvC6gTLFWUTBRivI0Dh4WgY4pxnkrBYxnjYnBmFU-wSOMH0MpWmTsEwriTTmqrAiQrSLcMckTLdaqE5hYLmCPo-NkvPyo3jGU98eO_T5_Ajn_-lUTwFFpFvnZnCONFfF6u3xeiKJoZ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAFHxBPOgJFYzf7sGjCy37AT2LCAqkkWK4ke12a4wKpmkv_nrftgWN8eCtadK0m5ftvGnnzQBcCdZWuqNjqrXuUi5il3Y9zmmHR1KZWFiYsGqLiRzM-P1czCtwvZmFMcbk4jPTtIf5v_xopTP7qazlIVwhlduCbcE5F8W01oZeWaeVckbHdbzW0O_5U4HvZ8sC27ktpw2R-JGhkkNIvwbj9c0L5chrM0vDpv785cv436fbg8b3sB7xNzC0DxWzPIDaOq2BlJu3DtRXiQ1OeSMBUtdVQgKbDkEeba4SXkisAv6Z3CXqnUyfeg2Y9W-DmwEtwxLoC9LMlLqq60ilZdzWEVOOss6AXoTNihSRRJTXoWuwFTSOdBiLBWehCLEczNGSRdimsUOoLldLcwTEYUYY4WnpIl1BwqWQJWrmxZJ7TGMLcwx1u_rFR-GHsSgXfvL36UvYGQTj0WI0nDycwq6tRSEYPINqmmTmHEE9DS_yWn4B6tudZg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Parallel+and+Distributed+Processing+Symposium&rft.atitle=Parallel+Tensor+Train+Rounding+using+Gram+SVD&rft.au=Al+Daas%2C+Hussam&rft.au=Ballard%2C+Grey&rft.au=Manning%2C+Lawton&rft.date=2022-05-01&rft.pub=IEEE&rft.eissn=1530-2075&rft.spage=930&rft.epage=940&rft_id=info:doi/10.1109%2FIPDPS53621.2022.00095&rft.externalDocID=9820742 |