Parallel Tensor Train Rounding using Gram SVD

Tensor Train (TT) is a low-rank tensor representation consisting of a series of three-way cores whose dimensions specify the TT ranks. Formal tensor train arithmetic often causes an artificial increase in the TT ranks. Thus, a key operation for applications that use the TT format is rounding, which...

Full description

Saved in:
Bibliographic Details
Published inProceedings - IEEE International Parallel and Distributed Processing Symposium pp. 930 - 940
Main Authors Al Daas, Hussam, Ballard, Grey, Manning, Lawton
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2022
Subjects
Online AccessGet full text
ISSN1530-2075
DOI10.1109/IPDPS53621.2022.00095

Cover

Abstract Tensor Train (TT) is a low-rank tensor representation consisting of a series of three-way cores whose dimensions specify the TT ranks. Formal tensor train arithmetic often causes an artificial increase in the TT ranks. Thus, a key operation for applications that use the TT format is rounding, which truncates the TT ranks subject to an approximation error guarantee. Truncation is performed via SVD of a highly structured matrix, and current rounding methods require careful orthogonalization to compute an accurate SVD. We propose a new algorithm for TT-Rounding based on the Gram SVD algorithm that avoids the expensive orthogonalization phase. Our algorithm performs less computation and can be parallelized more easily than existing approaches, at the expense of a slight loss of accuracy. We demonstrate that our implementation of the rounding algorithm is efficient, scales well, and consistently outperforms the existing state-of-the-art parallel implementation in our experiments.
AbstractList Tensor Train (TT) is a low-rank tensor representation consisting of a series of three-way cores whose dimensions specify the TT ranks. Formal tensor train arithmetic often causes an artificial increase in the TT ranks. Thus, a key operation for applications that use the TT format is rounding, which truncates the TT ranks subject to an approximation error guarantee. Truncation is performed via SVD of a highly structured matrix, and current rounding methods require careful orthogonalization to compute an accurate SVD. We propose a new algorithm for TT-Rounding based on the Gram SVD algorithm that avoids the expensive orthogonalization phase. Our algorithm performs less computation and can be parallelized more easily than existing approaches, at the expense of a slight loss of accuracy. We demonstrate that our implementation of the rounding algorithm is efficient, scales well, and consistently outperforms the existing state-of-the-art parallel implementation in our experiments.
Author Ballard, Grey
Al Daas, Hussam
Manning, Lawton
Author_xml – sequence: 1
  givenname: Hussam
  surname: Al Daas
  fullname: Al Daas, Hussam
  email: hussam.al-daas@stfc.ac.uk
  organization: Computational Mathematics Group,Rutherford Appleton Laboratory,Didcot, Oxfordshire,UK
– sequence: 2
  givenname: Grey
  surname: Ballard
  fullname: Ballard, Grey
  email: ballard@wfu.edu
  organization: Wake Forest University,Department of Computer Science,Winston-Salem,NC,USA
– sequence: 3
  givenname: Lawton
  surname: Manning
  fullname: Manning, Lawton
  email: mannlg15@wfu.edu
  organization: Wake Forest University,Department of Computer Science,Winston-Salem,NC,USA
BookMark eNotj8FKw0AQQFdRsK39AhHyA6kzO9lJ9iitrYWCwUavZZLdSCTdyMYe_HsVvbx3e_Cm6iIMwSt1i7BABHu3LVfl3hBrXGjQegEA1pypuc0LZDZZgcD2XE3QEKQacnOlpuP4DqCBMjtRaSlR-t73SeXDOMSkitKF5Hk4BdeFt-Q0_nIT5ZjsX1fX6rKVfvTzf8_Uy_qhWj6mu6fNdnm_Szsk-kxRCmBpuNWNIwHROrfWobFsHGvApkZvkT0wELUmo9rUjoWgYXJsgGbq5q_bee8PH7E7Svw62OJnINP0DbwSQ5U
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IPDPS53621.2022.00095
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665481069
1665481064
EISSN 1530-2075
EndPage 940
ExternalDocumentID 9820742
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i133t-1a806ac6f2cd3a0a22799d15965d6201cb1e916e06033f543b5bd6a30c63d6503
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-1a806ac6f2cd3a0a22799d15965d6201cb1e916e06033f543b5bd6a30c63d6503
PageCount 11
ParticipantIDs ieee_primary_9820742
PublicationCentury 2000
PublicationDate 2022-May
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May
PublicationDecade 2020
PublicationTitle Proceedings - IEEE International Parallel and Distributed Processing Symposium
PublicationTitleAbbrev IPDPS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020349
Score 1.817453
Snippet Tensor Train (TT) is a low-rank tensor representation consisting of a series of three-way cores whose dimensions specify the TT ranks. Formal tensor train...
SourceID ieee
SourceType Publisher
StartPage 930
SubjectTerms Approximation algorithms
Approximation error
Distributed processing
Iterative methods
Matrix decomposition
Scalability
Tensors
Title Parallel Tensor Train Rounding using Gram SVD
URI https://ieeexplore.ieee.org/document/9820742
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGP0CnDyhgvF3evBooaM_WM8ioolmETDcSNd1xqjDLOPiX-_XbaAxHrwtS5a1a9b3ve197wFcSD4wdmhTaq0NqZBpQEMtBB2KRBmXSg8TXm3xoCZzcbeQiwZcbnthnHOl-Mz1_GH5Lz9Z2bX_VNbXCFdI5ZrQHIaq6tXakivvs1J36ARM92-jUTSVuDt7DjgoTTl9hMSPBJUSQMZtuN_cutKNvPbWRdyzn79cGf87tl3ofrfqkWgLQnvQcNk-tDdZDaR-dTtAI5P72JQ3MkPiusrJzGdDkEefqoQXEq9_fyY3uXkn06dRF-bj69nVhNZRCfQFSWZBAxMyZaxKBzbhhhnvC6gTLFWUTBRivI0Dh4WgY4pxnkrBYxnjYnBmFU-wSOMH0MpWmTsEwriTTmqrAiQrSLcMckTLdaqE5hYLmCPo-NkvPyo3jGU98eO_T5_Ajn_-lUTwFFpFvnZnCONFfF6u3xeiKJoZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAFHxBPOgJFYzf7sGjCy37AT2LCAqkkWK4ke12a4wKpmkv_nrftgWN8eCtadK0m5ftvGnnzQBcCdZWuqNjqrXuUi5il3Y9zmmHR1KZWFiYsGqLiRzM-P1czCtwvZmFMcbk4jPTtIf5v_xopTP7qazlIVwhlduCbcE5F8W01oZeWaeVckbHdbzW0O_5U4HvZ8sC27ktpw2R-JGhkkNIvwbj9c0L5chrM0vDpv785cv436fbg8b3sB7xNzC0DxWzPIDaOq2BlJu3DtRXiQ1OeSMBUtdVQgKbDkEeba4SXkisAv6Z3CXqnUyfeg2Y9W-DmwEtwxLoC9LMlLqq60ilZdzWEVOOss6AXoTNihSRRJTXoWuwFTSOdBiLBWehCLEczNGSRdimsUOoLldLcwTEYUYY4WnpIl1BwqWQJWrmxZJ7TGMLcwx1u_rFR-GHsSgXfvL36UvYGQTj0WI0nDycwq6tRSEYPINqmmTmHEE9DS_yWn4B6tudZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+International+Parallel+and+Distributed+Processing+Symposium&rft.atitle=Parallel+Tensor+Train+Rounding+using+Gram+SVD&rft.au=Al+Daas%2C+Hussam&rft.au=Ballard%2C+Grey&rft.au=Manning%2C+Lawton&rft.date=2022-05-01&rft.pub=IEEE&rft.eissn=1530-2075&rft.spage=930&rft.epage=940&rft_id=info:doi/10.1109%2FIPDPS53621.2022.00095&rft.externalDocID=9820742