An Empirical Comparison of Supervised Algorithms for Ransomware Identification on Network Traffic

Android mobile systems are currently the main target of malware attacks. In this sense, machine learning is a suitable approach to analyze network traffic, and it generally achieves good results in the identification and detection of malware. However, an underlying problem is creating a dataset with...

Full description

Saved in:
Bibliographic Details
Published in2020 39th International Conference of the Chilean Computer Science Society (SCCC) pp. 1 - 7
Main Authors Manzano, Carlos, Meneses, Claudio, Leger, Paul
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.11.2020
Subjects
Online AccessGet full text
DOI10.1109/SCCC51225.2020.9281283

Cover

Abstract Android mobile systems are currently the main target of malware attacks. In this sense, machine learning is a suitable approach to analyze network traffic, and it generally achieves good results in the identification and detection of malware. However, an underlying problem is creating a dataset with network characteristics that accurately reflect the malwareś behavior. Characterizing adequately the dataset is a relevant process to identify malware with high precision when using traditional machine learning algorithms. This paper compares empirically three supervised machine learning algorithms, in order to identify ransomware traffic based on Android mobile network traffic features. We consider 9 features related to time properties of flows and bidirectional packets in 10 families of ransomware and different benign application Android network traffic. Empirical results show that Random Forest (RF) achieved a 96% accuracy in classifying ransomware, higher than Decision Tree (DT) and K-Nearest Neighbor (KNN) approaches. We conclude that the selected features allow us to identify ransomware traffic and differentiate it from the traffic of benign applications.
AbstractList Android mobile systems are currently the main target of malware attacks. In this sense, machine learning is a suitable approach to analyze network traffic, and it generally achieves good results in the identification and detection of malware. However, an underlying problem is creating a dataset with network characteristics that accurately reflect the malwareś behavior. Characterizing adequately the dataset is a relevant process to identify malware with high precision when using traditional machine learning algorithms. This paper compares empirically three supervised machine learning algorithms, in order to identify ransomware traffic based on Android mobile network traffic features. We consider 9 features related to time properties of flows and bidirectional packets in 10 families of ransomware and different benign application Android network traffic. Empirical results show that Random Forest (RF) achieved a 96% accuracy in classifying ransomware, higher than Decision Tree (DT) and K-Nearest Neighbor (KNN) approaches. We conclude that the selected features allow us to identify ransomware traffic and differentiate it from the traffic of benign applications.
Author Meneses, Claudio
Leger, Paul
Manzano, Carlos
Author_xml – sequence: 1
  givenname: Carlos
  surname: Manzano
  fullname: Manzano, Carlos
  email: cmanzano@ucn.cl
  organization: Universidad Católica del Norte,Escuela de Ingeniería,Coquimbo,Chile
– sequence: 2
  givenname: Claudio
  surname: Meneses
  fullname: Meneses, Claudio
  email: cmeneses@ucn.cl
  organization: Universidad Católica del Norte,Dpto. Ing. de Sistemas y Computación,Antofagasta,Chile
– sequence: 3
  givenname: Paul
  surname: Leger
  fullname: Leger, Paul
  email: pleger@ucn.cl
  organization: Universidad Católica del Norte,Escuela de Ingeniería,Coquimbo,Chile
BookMark eNotj91KwzAcxSPohc49gSB5gdZ8LE1yWcLUwVBw83r82yYabJOSVIdvb4e7Opxz-B04N-gyxGARuqekpJToh50xRlDGRMkII6VmijLFL9BSS0Xl7BRnil0jqANeD6NPvoUemziMkHyOAUeHd9-jTT8-2w7X_UdMfvocMnYx4TcIOQ5HSBZvOhsm72Z88ics4Bc7HWP6wvsEbs5v0ZWDPtvlWRfo_XG9N8_F9vVpY-pt4SnnU0G1g6aqnGwbJxntukqAWzVcCekUb0E2SknSCaXbuV-5llZEUs0EFwCcCL5Ad_-73lp7GJMfIP0ezsf5H-KmU_k
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCCC51225.2020.9281283
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728183282
1728183286
EndPage 7
ExternalDocumentID 9281283
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i133t-19fab66f7cbf721dd65af4b3857f83ca7b8870d589cf724fc1607192535aa3053
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:27 EDT 2023
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-19fab66f7cbf721dd65af4b3857f83ca7b8870d589cf724fc1607192535aa3053
PageCount 7
ParticipantIDs ieee_primary_9281283
PublicationCentury 2000
PublicationDate 2020-Nov.-16
PublicationDateYYYYMMDD 2020-11-16
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-Nov.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2020 39th International Conference of the Chilean Computer Science Society (SCCC)
PublicationTitleAbbrev SCCC
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.1724486
Snippet Android mobile systems are currently the main target of malware attacks. In this sense, machine learning is a suitable approach to analyze network traffic, and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Android
Features Selection
Machine Learning
Ransomware
Traffic Identification
Title An Empirical Comparison of Supervised Algorithms for Ransomware Identification on Network Traffic
URI https://ieeexplore.ieee.org/document/9281283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvHHlBw8mq6_kjbHUTaGsCHOwW4jaRIdunZsLYJ_vS9tnSgehB5CE0hI4H3vJe_7HkK3visAhRkjJk45CY2WRAQ6JoxybpSxEGIJztMZmyzC-yVdttDdgQujta6Sz7Rjm9VbvsrT0l6VDbgPcBQHbdSOIl5ztRrSr-fywTxJEoAvn0LU57tOM_hH1ZQKNMbHaPo1XZ0r8uqUhXTSj19KjP9dzwnqfdPz8MMBeE5RS2ddJIYZHm2260ryAyeH8oI4N3hebq1J2GuFh2_P-W5dvGz2GNxV_AhIlW_exU7jmrJrmjs8DN-sThHHgGdWaKKHFuPRUzIhTf0EsobIsyAeN0IyZqJUGgj0lGJUmFAGMY1MHKQikmBhXEVjnkJ_aNJKbI77NKBCgB0IzlAnyzN9jjCzasbgDEnNdUgjX4IfxYQSkntShVpcoK7dntW2lshYNTtz-ffvK3Rkj8hS-jzWR51iV-prwPZC3lSH-gmmsKb8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zHvSksom_zcGj7foraXMcZWPqNsRtsNtImkSHrh1bh-Bf70tbJ4oHoYfQBBISeN97yfu-h9CN53BAYUotHSXMCrQSFvdVZFHCmJbaQIghOA-GtDcJ7qdkWkO3Wy6MUqpIPlO2aRZv-TJLNuaqrMU8gKPI30G7BKKKsGRrVbRf12GtURzHAGAegbjPc-xq-I-6KQVsdA_Q4GvCMlvk1d7kwk4-fmkx_ndFh6j5TdDDj1voOUI1lTYQb6e4s1jOC9EPHG8LDOJM49FmaYzCWkncfnvOVvP8ZbHG4LDiJ8CqbPHOVwqXpF1d3eJh-IZlkjgGRDNSE0006XbGcc-qKihYc4g9c8tlmgtKdZgIDaGelJRwHQg_IqGO_ISHAmyMI0nEEugPdFLIzTGP-IRzsAT-MaqnWapOEKZGzxjcIaGYCkjoCfCkKJdcMFfIQPFT1DDbM1uWIhmzamfO_v59jfZ640F_1r8bPpyjfXNchuDn0gtUz1cbdQlIn4ur4oA_AZncqk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+39th+International+Conference+of+the+Chilean+Computer+Science+Society+%28SCCC%29&rft.atitle=An+Empirical+Comparison+of+Supervised+Algorithms+for+Ransomware+Identification+on+Network+Traffic&rft.au=Manzano%2C+Carlos&rft.au=Meneses%2C+Claudio&rft.au=Leger%2C+Paul&rft.date=2020-11-16&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FSCCC51225.2020.9281283&rft.externalDocID=9281283