Adaptive EM-Based Algorithm for Cooperative Spectrum Sensing in Mobile Environments
In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a cooperative sensing procedure based on the soft fusion of the signal energy levels measured at the sensors. The detection problem is posed as a c...
Saved in:
| Published in | 2018 IEEE Statistical Signal Processing Workshop (SSP) pp. 732 - 736 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.06.2018
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/SSP.2018.8450700 |
Cover
| Abstract | In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a cooperative sensing procedure based on the soft fusion of the signal energy levels measured at the sensors. The detection problem is posed as a composite hypothesis testing problem. Then, we consider the Generalized Likelihood Ratio Test approach where the maximum likelihood estimate of the unknown parameters (which are the signal-to-noise ratio under the different hypotheses) are obtained from the most recent energy levels at the sensors by means of the Expectation-Maximization algorithm. We derive simple closed-form expressions for both, the E and the M steps. The algorithm can operate even when only a subset of sensors report their energy estimates, which makes it suited to be used with any sensor selection strategy (active sensing). Simulation results show the feasibility and efficiency of the method in realistic slow-fading environments. |
|---|---|
| AbstractList | In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a cooperative sensing procedure based on the soft fusion of the signal energy levels measured at the sensors. The detection problem is posed as a composite hypothesis testing problem. Then, we consider the Generalized Likelihood Ratio Test approach where the maximum likelihood estimate of the unknown parameters (which are the signal-to-noise ratio under the different hypotheses) are obtained from the most recent energy levels at the sensors by means of the Expectation-Maximization algorithm. We derive simple closed-form expressions for both, the E and the M steps. The algorithm can operate even when only a subset of sensors report their energy estimates, which makes it suited to be used with any sensor selection strategy (active sensing). Simulation results show the feasibility and efficiency of the method in realistic slow-fading environments. |
| Author | Via, Javier Perez, Jesus Santamaria, Ignacio |
| Author_xml | – sequence: 1 givenname: Jesus surname: Perez fullname: Perez, Jesus organization: Advanced Signal Processing Group, University of Cantabria, Spain – sequence: 2 givenname: Ignacio surname: Santamaria fullname: Santamaria, Ignacio organization: Advanced Signal Processing Group, University of Cantabria, Spain – sequence: 3 givenname: Javier surname: Via fullname: Via, Javier organization: Advanced Signal Processing Group, University of Cantabria, Spain |
| BookMark | eNo9j11LwzAUhiPohZveC97kD7TmNEvSXs4xP2BDoXpdkvZkBtqkpN1k_97NTa8OL-d9Xngm5NIHj4TcAUsBWPFQlu9pxiBP85lgirELMgHBcwlCAVyTct7ofnQ7pMt18qgHbOi83YToxq-O2hDpIoQeo_6tlD3WY9x2tEQ_OL-hztN1MK490H7nYvAd-nG4IVdWtwPenu-UfD4tPxYvyert-XUxXyUOeMYSgcrwuqhV0dRQz5g9JCEtCJZZ0EYylZuZaiQ3XEhtTW60kMhZxm0tVQ58SuC0u_W93n_rtq366Dod9xWw6mhfDUNfHe2rs_2BuT8xDhH_63_fH4GxXCw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
| DOI | 10.1109/SSP.2018.8450700 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1538615711 9781538615713 |
| EndPage | 736 |
| ExternalDocumentID | oai:repositorio.unican.es:10902/15060 8450700 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
| ID | FETCH-LOGICAL-i1320-5e7b3c9c79dc1c40fb3c56f1502f1ab6078b47d63b356afb8ba56e3023fc67813 |
| IEDL.DBID | UNPAY |
| IngestDate | Sun Oct 26 03:59:41 EDT 2025 Thu Jun 29 18:39:43 EDT 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i1320-5e7b3c9c79dc1c40fb3c56f1502f1ab6078b47d63b356afb8ba56e3023fc67813 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10902/15060 |
| PageCount | 5 |
| ParticipantIDs | unpaywall_primary_10_1109_ssp_2018_8450700 ieee_primary_8450700 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-June |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE Statistical Signal Processing Workshop (SSP) |
| PublicationTitleAbbrev | SSP |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6994346 |
| Snippet | In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a... |
| SourceID | unpaywall ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 732 |
| SubjectTerms | Cascading style sheets Cooperative spectrum sensing EM algorithm energy detection Energy states fading channels Light rail systems likelihood ratio test Maximum likelihood estimation Microsoft Windows Sensors Signal processing algorithms |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mLupFzWacv9KDJyMMRqH0OJctxgSzBJfsRuivubgB2SBG_3pbYLgYD94ovAB5bfp9bd_3HgB3FmcKeQgyGLFdAyFBDCoZMRC1sRioUY1KeXTw4j3N0PPcnbfAQ6OFEUKUwWfC1JflWT5PWaG3yvo-UuzFUgv0A-x7lVZrd_JokX4YTnWolm_WZnW9lGNwWCRZ_PkRr1Z70DE5AcHuo1XEyLtZ5NRkX7_yMf73r05B90ekB6cN_JyBlkg6IBzyONMzGBwHxqNCKA6Hq0W6WeZva6j4KRylaSaqbN9Q157PN8UahjqKPVnAZQKDlKp5Ao739G9dMJuMX0dPRl03wViWgmhXYOowwjDhzGbIkqrlelJRv4G0Y-opVkAR5p5DHdeLJfVp7HpCVw-STGGX7ZyDdpIm4gJAbDN1y-YIWzo1mxtjWyqKJ6h0HIk57oGOdkiUVakxotoXPXDf-Lx5Vi43LBJtt1mk-2lnfPn3O67AkbaqwrKuQVv5Q9woApDT27LnvwFyPLEP priority: 102 providerName: IEEE |
| Title | Adaptive EM-Based Algorithm for Cooperative Spectrum Sensing in Mobile Environments |
| URI | https://ieeexplore.ieee.org/document/8450700 http://hdl.handle.net/10902/15060 |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QDsaLGjBilPTgyWSwsnalRyQQYgIhQRI8LWvXIhG2RUaM_vW-jp_RePC4rofmvabf1_R930Po3o0UII-gjhKEOZRq4UijhEMl4boJu5rm8ujB0O9P6NOUTQto15_wh71AXjXYyE3wTlDJZ0C3i6g0GY7aL7snR1c0VitrPEla9RYFdmO1anmjlDN0uo7T8PMjXCyOMKN3flDebEpF3urrTNbV128jxr-Xc4EqB0keHu3B5hIVdFxG43YUpva8wt2B8wh4FOH2YpbAff91iYGN4k6SpHrj7Y1tp_nsfb3EY1uzHs_wPMaDRMKpgLtHarcKmvS6z52-s-2S4Mxz-TPTXHpKKC4iRRR1DXwx38Aqm4aE0gcOICmPfE96zA-NbMmQ-dr2CjIKkIp4V6gYJ7G-RpgTBUMkoty1Rmws5MQAodPSeJ7hEa-isg1skG6MMIJtvKvoYR_o_b_8cuGKAJIT2OTsJt_8Z_ItKkJg9B3gfiZruTivts3_N5wNrmA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHtCLGjB-24Mn48bG2pUdkUBQGSEZJNyWtWuRCNsCI0Z_ve02JjEevO2j-8i7ps_T9XneF4B7I2QSeRykMcfEGkLc0ahgjoaoSXhL9mqU2aPdkT2YopcZnlXAY-mF4Zxn4jOuq81sLT-M2Vb9Kmu2kWQvhpygH2CEEM7dWru1R8Npet5YibXaetGwqJhyBGrbKAk-P4Llcg88-sfA3T0214y869uU6uzrV0bG_77XCWj82PTguASgU1DhUR14nTBI1BgGe672JDEqhJ3lPF4v0rcVlAwVduM44Xm-b6iqz6fr7Qp6SscezeEigm5M5UgBe3sOuAaY9nuT7kArKidoi8wSjTmhFnMYcUJmMmQIuYdtIclfS5gBtSUvoIiEtkUtbAeCtmmAba7qBwkm0cu0zkA1iiN-DiAxmTxkhogYKjkbDogpJMnjVFiWICG5AHUVED_Jk2P4RSwuwEMZ8_JcNuEwHH-zSXz1nXaNL_--xx2oDSbu0B8-j16vwKG6IhdpXYOqjA2_kXQgpbdZL_gG45C0XA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QDsaLGjBi1PTgyWSwsnalRyQQYgIhQRI8LW3XIhG3RSBG_3pfx89oPHhc10PzXtPva_q-7yF058cakEdQTwvCPEqN8JTVwqOKcNOAXU1zeXR_EPbG9HHCJgW07U_4w14grxqs5yZ4R6gUMqDbRVQaD4at5-2Toy_qi4UzniTNWpMCu3FatbxRygk6XiWZ_PyQ8_kBZnRP98qbdanIa221VDX99duI8e_lnKHKXpKHhzuwOUcFk5TRqBXLzJ1XuNP3HgCPYtyaT1O477-8YWCjuJ2mmVl7e2PXaX75vnrDI1eznkzxLMH9VMGpgDsHarcKGnc7T-2et-mS4M1y-TMzXAVaaC5iTTT1LXyx0MIqG5ZIFQIHUJTHYaACFkqrmkqy0LheQVYDUpHgAhWTNDGXCHOiYYjElPvOiI1JTiwQOqNsEFge8yoqu8BG2doII9rEu4rud4He_csvF76IIDmRS8528tV_Jl-jIgTG3ADuL9XtJvPfiyKtXw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+Statistical+Signal+Processing+Workshop+%28SSP%29&rft.atitle=Adaptive+EM-Based+Algorithm+for+Cooperative+Spectrum+Sensing+in+Mobile+Environments&rft.au=Perez%2C+Jesus&rft.au=Santamaria%2C+Ignacio&rft.au=Via%2C+Javier&rft.date=2018-06-01&rft.pub=IEEE&rft.spage=732&rft.epage=736&rft_id=info:doi/10.1109%2FSSP.2018.8450700&rft.externalDocID=8450700 |