Adaptive EM-Based Algorithm for Cooperative Spectrum Sensing in Mobile Environments

In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a cooperative sensing procedure based on the soft fusion of the signal energy levels measured at the sensors. The detection problem is posed as a c...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE Statistical Signal Processing Workshop (SSP) pp. 732 - 736
Main Authors Perez, Jesus, Santamaria, Ignacio, Via, Javier
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
DOI10.1109/SSP.2018.8450700

Cover

Abstract In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a cooperative sensing procedure based on the soft fusion of the signal energy levels measured at the sensors. The detection problem is posed as a composite hypothesis testing problem. Then, we consider the Generalized Likelihood Ratio Test approach where the maximum likelihood estimate of the unknown parameters (which are the signal-to-noise ratio under the different hypotheses) are obtained from the most recent energy levels at the sensors by means of the Expectation-Maximization algorithm. We derive simple closed-form expressions for both, the E and the M steps. The algorithm can operate even when only a subset of sensors report their energy estimates, which makes it suited to be used with any sensor selection strategy (active sensing). Simulation results show the feasibility and efficiency of the method in realistic slow-fading environments.
AbstractList In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a cooperative sensing procedure based on the soft fusion of the signal energy levels measured at the sensors. The detection problem is posed as a composite hypothesis testing problem. Then, we consider the Generalized Likelihood Ratio Test approach where the maximum likelihood estimate of the unknown parameters (which are the signal-to-noise ratio under the different hypotheses) are obtained from the most recent energy levels at the sensors by means of the Expectation-Maximization algorithm. We derive simple closed-form expressions for both, the E and the M steps. The algorithm can operate even when only a subset of sensors report their energy estimates, which makes it suited to be used with any sensor selection strategy (active sensing). Simulation results show the feasibility and efficiency of the method in realistic slow-fading environments.
Author Via, Javier
Perez, Jesus
Santamaria, Ignacio
Author_xml – sequence: 1
  givenname: Jesus
  surname: Perez
  fullname: Perez, Jesus
  organization: Advanced Signal Processing Group, University of Cantabria, Spain
– sequence: 2
  givenname: Ignacio
  surname: Santamaria
  fullname: Santamaria, Ignacio
  organization: Advanced Signal Processing Group, University of Cantabria, Spain
– sequence: 3
  givenname: Javier
  surname: Via
  fullname: Via, Javier
  organization: Advanced Signal Processing Group, University of Cantabria, Spain
BookMark eNo9j11LwzAUhiPohZveC97kD7TmNEvSXs4xP2BDoXpdkvZkBtqkpN1k_97NTa8OL-d9Xngm5NIHj4TcAUsBWPFQlu9pxiBP85lgirELMgHBcwlCAVyTct7ofnQ7pMt18qgHbOi83YToxq-O2hDpIoQeo_6tlD3WY9x2tEQ_OL-hztN1MK490H7nYvAd-nG4IVdWtwPenu-UfD4tPxYvyert-XUxXyUOeMYSgcrwuqhV0dRQz5g9JCEtCJZZ0EYylZuZaiQ3XEhtTW60kMhZxm0tVQ58SuC0u_W93n_rtq366Dod9xWw6mhfDUNfHe2rs_2BuT8xDhH_63_fH4GxXCw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.1109/SSP.2018.8450700
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISBN 1538615711
9781538615713
EndPage 736
ExternalDocumentID oai:repositorio.unican.es:10902/15060
8450700
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-i1320-5e7b3c9c79dc1c40fb3c56f1502f1ab6078b47d63b356afb8ba56e3023fc67813
IEDL.DBID UNPAY
IngestDate Sun Oct 26 03:59:41 EDT 2025
Thu Jun 29 18:39:43 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1320-5e7b3c9c79dc1c40fb3c56f1502f1ab6078b47d63b356afb8ba56e3023fc67813
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10902/15060
PageCount 5
ParticipantIDs unpaywall_primary_10_1109_ssp_2018_8450700
ieee_primary_8450700
PublicationCentury 2000
PublicationDate 2018-June
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-June
PublicationDecade 2010
PublicationTitle 2018 IEEE Statistical Signal Processing Workshop (SSP)
PublicationTitleAbbrev SSP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6994346
Snippet In this work we propose a new adaptive algorithm for cooperative spectrum sensing in dynamic environments where the channels are time varying. We assume a...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 732
SubjectTerms Cascading style sheets
Cooperative spectrum sensing
EM algorithm
energy detection
Energy states
fading channels
Light rail systems
likelihood ratio test
Maximum likelihood estimation
Microsoft Windows
Sensors
Signal processing algorithms
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG7mLupFzWacv9KDJyMMRqH0OJctxgSzBJfsRuivubgB2SBG_3pbYLgYD94ovAB5bfp9bd_3HgB3FmcKeQgyGLFdAyFBDCoZMRC1sRioUY1KeXTw4j3N0PPcnbfAQ6OFEUKUwWfC1JflWT5PWaG3yvo-UuzFUgv0A-x7lVZrd_JokX4YTnWolm_WZnW9lGNwWCRZ_PkRr1Z70DE5AcHuo1XEyLtZ5NRkX7_yMf73r05B90ekB6cN_JyBlkg6IBzyONMzGBwHxqNCKA6Hq0W6WeZva6j4KRylaSaqbN9Q157PN8UahjqKPVnAZQKDlKp5Ao739G9dMJuMX0dPRl03wViWgmhXYOowwjDhzGbIkqrlelJRv4G0Y-opVkAR5p5DHdeLJfVp7HpCVw-STGGX7ZyDdpIm4gJAbDN1y-YIWzo1mxtjWyqKJ6h0HIk57oGOdkiUVakxotoXPXDf-Lx5Vi43LBJtt1mk-2lnfPn3O67AkbaqwrKuQVv5Q9woApDT27LnvwFyPLEP
  priority: 102
  providerName: IEEE
Title Adaptive EM-Based Algorithm for Cooperative Spectrum Sensing in Mobile Environments
URI https://ieeexplore.ieee.org/document/8450700
http://hdl.handle.net/10902/15060
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QDsaLGjBilPTgyWSwsnalRyQQYgIhQRI8LWvXIhG2RUaM_vW-jp_RePC4rofmvabf1_R930Po3o0UII-gjhKEOZRq4UijhEMl4boJu5rm8ujB0O9P6NOUTQto15_wh71AXjXYyE3wTlDJZ0C3i6g0GY7aL7snR1c0VitrPEla9RYFdmO1anmjlDN0uo7T8PMjXCyOMKN3flDebEpF3urrTNbV128jxr-Xc4EqB0keHu3B5hIVdFxG43YUpva8wt2B8wh4FOH2YpbAff91iYGN4k6SpHrj7Y1tp_nsfb3EY1uzHs_wPMaDRMKpgLtHarcKmvS6z52-s-2S4Mxz-TPTXHpKKC4iRRR1DXwx38Aqm4aE0gcOICmPfE96zA-NbMmQ-dr2CjIKkIp4V6gYJ7G-RpgTBUMkoty1Rmws5MQAodPSeJ7hEa-isg1skG6MMIJtvKvoYR_o_b_8cuGKAJIT2OTsJt_8Z_ItKkJg9B3gfiZruTivts3_N5wNrmA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHtCLGjB-24Mn48bG2pUdkUBQGSEZJNyWtWuRCNsCI0Z_ve02JjEevO2j-8i7ps_T9XneF4B7I2QSeRykMcfEGkLc0ahgjoaoSXhL9mqU2aPdkT2YopcZnlXAY-mF4Zxn4jOuq81sLT-M2Vb9Kmu2kWQvhpygH2CEEM7dWru1R8Npet5YibXaetGwqJhyBGrbKAk-P4Llcg88-sfA3T0214y869uU6uzrV0bG_77XCWj82PTguASgU1DhUR14nTBI1BgGe672JDEqhJ3lPF4v0rcVlAwVduM44Xm-b6iqz6fr7Qp6SscezeEigm5M5UgBe3sOuAaY9nuT7kArKidoi8wSjTmhFnMYcUJmMmQIuYdtIclfS5gBtSUvoIiEtkUtbAeCtmmAba7qBwkm0cu0zkA1iiN-DiAxmTxkhogYKjkbDogpJMnjVFiWICG5AHUVED_Jk2P4RSwuwEMZ8_JcNuEwHH-zSXz1nXaNL_--xx2oDSbu0B8-j16vwKG6IhdpXYOqjA2_kXQgpbdZL_gG45C0XA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QDsaLGjBi1PTgyWSwsnalRyQQYgIhQRI8LW3XIhG3RSBG_3pfx89oPHhc10PzXtPva_q-7yF058cakEdQTwvCPEqN8JTVwqOKcNOAXU1zeXR_EPbG9HHCJgW07U_4w14grxqs5yZ4R6gUMqDbRVQaD4at5-2Toy_qi4UzniTNWpMCu3FatbxRygk6XiWZ_PyQ8_kBZnRP98qbdanIa221VDX99duI8e_lnKHKXpKHhzuwOUcFk5TRqBXLzJ1XuNP3HgCPYtyaT1O477-8YWCjuJ2mmVl7e2PXaX75vnrDI1eznkzxLMH9VMGpgDsHarcKGnc7T-2et-mS4M1y-TMzXAVaaC5iTTT1LXyx0MIqG5ZIFQIHUJTHYaACFkqrmkqy0LheQVYDUpHgAhWTNDGXCHOiYYjElPvOiI1JTiwQOqNsEFge8yoqu8BG2doII9rEu4rud4He_csvF76IIDmRS8528tV_Jl-jIgTG3ADuL9XtJvPfiyKtXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+Statistical+Signal+Processing+Workshop+%28SSP%29&rft.atitle=Adaptive+EM-Based+Algorithm+for+Cooperative+Spectrum+Sensing+in+Mobile+Environments&rft.au=Perez%2C+Jesus&rft.au=Santamaria%2C+Ignacio&rft.au=Via%2C+Javier&rft.date=2018-06-01&rft.pub=IEEE&rft.spage=732&rft.epage=736&rft_id=info:doi/10.1109%2FSSP.2018.8450700&rft.externalDocID=8450700