BaitAlarm: Detecting Phishing Sites Using Similarity in Fundamental Visual Features
In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that phishing pages need to preserve the visual appearance the target pages. We present an algorithm to quantify the suspicious ratings of web pages...
Saved in:
| Published in | 2013 5th International Conference on Intelligent Networking and Collaborative Systems pp. 790 - 795 |
|---|---|
| Main Authors | , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.09.2013
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/INCoS.2013.151 |
Cover
| Abstract | In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that phishing pages need to preserve the visual appearance the target pages. We present an algorithm to quantify the suspicious ratings of web pages based on similarity of visual appearance between the web pages. Since CSS is the standard technique to specify page layout, our solution uses the CSS as the basis for detecting visual similarities among web pages. We prototyped our approach as a Google Chrome extension and used it to rate the suspiciousness of web pages. The prototype shows the correctness and accuracy of our approach with a relatively low performance overhead. |
|---|---|
| AbstractList | In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that phishing pages need to preserve the visual appearance the target pages. We present an algorithm to quantify the suspicious ratings of web pages based on similarity of visual appearance between the web pages. Since CSS is the standard technique to specify page layout, our solution uses the CSS as the basis for detecting visual similarities among web pages. We prototyped our approach as a Google Chrome extension and used it to rate the suspiciousness of web pages. The prototype shows the correctness and accuracy of our approach with a relatively low performance overhead. |
| Author | Tao Wei Pei Li Zhenkai Liang Jian Mao Kun Li |
| Author_xml | – sequence: 1 surname: Jian Mao fullname: Jian Mao organization: Sch. of Electron. & Inf. Eng., BeiHang Univ., Beijing, China – sequence: 2 surname: Pei Li fullname: Pei Li organization: Sch. of Electron. & Inf. Eng., BeiHang Univ., Beijing, China – sequence: 3 surname: Kun Li fullname: Kun Li organization: Sch. of Electron. & Inf. Eng., BeiHang Univ., Beijing, China – sequence: 4 surname: Tao Wei fullname: Tao Wei organization: Inst. of Comput. Sci. & Technol., Peking Univ., Beijing, China – sequence: 5 surname: Zhenkai Liang fullname: Zhenkai Liang organization: Sch. of Comput., Nat. Univ. of Singapore, Singapore, Singapore |
| BookMark | eNo9j7FOwzAURY0EA5SuLCz5gbbPcezEbKUQqFQBUilr9Bo_qKXEqWJHKH_fVEFM9w73XOncsEvXOGLsjsOcc9CL9duq2c5j4GLOJb9gU51mkCotE51lcM22j2jDssK2foieKFAZrPuJPg7WH85lawP5aOfHXtthaEMfWRflnTNYkwtYRV_Wd0PkhKFryd-yq2-sPE3_csJ2-fPn6nW2eX9Zr5abmeUC-MxwzDDNNBiZSgTaSzRGYoLSJCUpo02sS4UqzcweNIoklgkBqlgIkZZAYsIW42_njtj_YlUVx9bW2PYFh-KsX1hXNr446xeD_kDcj4Qlov-xUgKkSMQJp99c3Q |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
| DOI | 10.1109/INCoS.2013.151 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès ENAC - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9780769549880 0769549888 |
| EndPage | 795 |
| ExternalDocumentID | oai:scholarbank.nus.edu.sg:10635/78040 6630534 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL ADTOC UNPAY |
| ID | FETCH-LOGICAL-i1301-d1a8a7890d575a0eb5add5a4a5d4ce6d9d29c6a678db09a34254e0a623337c0e3 |
| IEDL.DBID | RIE |
| IngestDate | Tue Aug 26 13:35:04 EDT 2025 Thu Jun 29 18:37:30 EDT 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i1301-d1a8a7890d575a0eb5add5a4a5d4ce6d9d29c6a678db09a34254e0a623337c0e3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/78040 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_1109_incos_2013_151 ieee_primary_6630534 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Sept. |
| PublicationDateYYYYMMDD | 2013-09-01 |
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2013 5th International Conference on Intelligent Networking and Collaborative Systems |
| PublicationTitleAbbrev | incos |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7792686 |
| Snippet | In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that... |
| SourceID | unpaywall ieee |
| SourceType | Open Access Repository Publisher |
| StartPage | 790 |
| SubjectTerms | Antiphishing Browsers Cascading style sheets CSS Feature extraction Layout Visualization Web pages Web Security |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1jO4gXlU2cTMnBg5d2SZv0h7f5YwzBMZmTeSpJmmnZVodrEf3r_dJ2U_CyUwsJpeRL-r3X5L0PoQvuq5ALX1t8NvMsJii1RMCk5bNYB2TmMkcZofDD0BtM2P2UT2toUwSxYnRSpHM7zUsnwfVrt3QcgBUO6bFrLHOApDc8Dui7jhqT4aj3UvkxUhJ2jauBMeKmrk3N_mNRNWUf7eXpSnx9isXiTwLpH6DHjQynPDcyt_NM2ur7vyvjzu92iFq_cj082iaiI1TTaRONr0WS9eBJyyt8q81WAbTh0Vv5zwmPAWqucXFgAO6XCXQEPI6TFPeNNqS0_MfPyTqHi8GJOfDyFpr0755uBlZVQcFKIDdRK6YiEEbqGgMqE0RLDp8zLpjgMVPai8PYCZUnIGHFkoQCIsOZJgIgkev6imj3GNXT91SfICwd6hlvfMdRHqMykIZ7hMBwtZKcKNlGTTPO0ao0yYgAycD6Zm10uR33bVtBPEgYFZGKTKQiiNTp7l07qJ595PoM8EAmz6sp8APf4rmu priority: 102 providerName: Unpaywall |
| Title | BaitAlarm: Detecting Phishing Sites Using Similarity in Fundamental Visual Features |
| URI | https://ieeexplore.ieee.org/document/6630534 http://scholarbank.nus.edu.sg/handle/10635/78040 |
| UnpaywallVersion | submittedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AHtSLGjDig-zBgwcLfez24Q0fhJhASBCDp2Z3u8RGKETaGP31zrZYjfHgqZvspm1mmn4zO_N9C3DOPBkw7imDzWauQbllGdynwvBopHxz5lBbaqLwYOj2J_R-yqYVuCy5MEqpvPlMtfUwr-VHS5nprbIOoiN-M7QKVc93C67WRofRMoMOZsHLsW7WctqWrjvmp6XswnaWrPj7G5_PfwBHbw8GX48s-kVe2lkq2vLjlxrjf99pHxrfFD0yKsHnACoqqcP4msdpF3PVxRW5Vbo8gHNk9FzsM5ExhpdrkjcJ4HgR40KMwUmckJ7mgxQy_-QxXmd40bFhhrl4Aya9u4ebvrE5NcGIEY8sI7K4zzW9NcJIjJtKMPyFMU45i6hUbhREdiBdjiAVCTPg6A1GlckxDHIcT5rKOYRaskzUERBhW67Ww7dt6VJL-ELnGwFmtUoKZkrRhLo2SLgqhDHCjS2acFHavJzLkw0zCLXmxDrUXgrRS8d_3-EEduz82Andy3UKtfQ1U2cI_qlo5V5vwdZkOOo-fQLb_7Mt |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtCLGjDicw8ePNjSx25pvfkiqEBIAOOt2d0usREKERqjv97ZFqsxHjx1k23aZmbT-b6dmW8BTllTBow3lcHGY8-g3LYN7lNhNGmkfGvsUkfqRuFuz2uP6P0TeyrBedELo5TKis-UqYdZLj-ayVRvlTUwOuKaoWuwziilLO_WWikx2lbQQB48G-hyLde0deYxOy9lEyppMufvb3wy-RE6WlvQ_XppXjHyYqZLYcqPX3qM__2qbah9N-mRfhF-dqCkkioMrni8vES2Or0gN0onCHCO9J_znSYyQIC5IFmZAI6nMd6IKJzECWnpjpBc6J88xosULxodpsjGazBq3Q6v28bq3AQjxohkG5HNfa4bXCPEYtxSguFPjHHKWUSl8qIgcgLpcQxTkbACjv5gVFkcgZDrNqWl3F0oJ7NE7QERju1pRXzHkR61hS804wiQ1yopmCVFHaraIOE8l8YIV7aow1lh82IuoxtWEGrViUWovRSil_b_fsIJVNrDbifs3PUeDmDDyQ6h0JVdh1BevqbqCKHAUhxnK-ATwIq0yg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1jO4gXlU2cTMnBg5d2SZv0h7f5YwzBMZmTeSpJmmnZVodrEf3r_dJ2U_CyUwsJpeRL-r3X5L0PoQvuq5ALX1t8NvMsJii1RMCk5bNYB2TmMkcZofDD0BtM2P2UT2toUwSxYnRSpHM7zUsnwfVrt3QcgBUO6bFrLHOApDc8Dui7jhqT4aj3UvkxUhJ2jauBMeKmrk3N_mNRNWUf7eXpSnx9isXiTwLpH6DHjQynPDcyt_NM2ur7vyvjzu92iFq_cj082iaiI1TTaRONr0WS9eBJyyt8q81WAbTh0Vv5zwmPAWqucXFgAO6XCXQEPI6TFPeNNqS0_MfPyTqHi8GJOfDyFpr0755uBlZVQcFKIDdRK6YiEEbqGgMqE0RLDp8zLpjgMVPai8PYCZUnIGHFkoQCIsOZJgIgkev6imj3GNXT91SfICwd6hlvfMdRHqMykIZ7hMBwtZKcKNlGTTPO0ao0yYgAycD6Zm10uR33bVtBPEgYFZGKTKQiiNTp7l07qJ595PoM8EAmz6sp8APf4rmu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+5th+International+Conference+on+Intelligent+Networking+and+Collaborative+Systems&rft.atitle=BaitAlarm%3A+Detecting+Phishing+Sites+Using+Similarity+in+Fundamental+Visual+Features&rft.au=Jian+Mao&rft.au=Pei+Li&rft.au=Kun+Li&rft.au=Tao+Wei&rft.date=2013-09-01&rft.pub=IEEE&rft.spage=790&rft.epage=795&rft_id=info:doi/10.1109%2FINCoS.2013.151&rft.externalDocID=6630534 |