BaitAlarm: Detecting Phishing Sites Using Similarity in Fundamental Visual Features

In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that phishing pages need to preserve the visual appearance the target pages. We present an algorithm to quantify the suspicious ratings of web pages...

Full description

Saved in:
Bibliographic Details
Published in2013 5th International Conference on Intelligent Networking and Collaborative Systems pp. 790 - 795
Main Authors Jian Mao, Pei Li, Kun Li, Tao Wei, Zhenkai Liang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2013
Subjects
Online AccessGet full text
DOI10.1109/INCoS.2013.151

Cover

Abstract In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that phishing pages need to preserve the visual appearance the target pages. We present an algorithm to quantify the suspicious ratings of web pages based on similarity of visual appearance between the web pages. Since CSS is the standard technique to specify page layout, our solution uses the CSS as the basis for detecting visual similarities among web pages. We prototyped our approach as a Google Chrome extension and used it to rate the suspiciousness of web pages. The prototype shows the correctness and accuracy of our approach with a relatively low performance overhead.
AbstractList In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that phishing pages need to preserve the visual appearance the target pages. We present an algorithm to quantify the suspicious ratings of web pages based on similarity of visual appearance between the web pages. Since CSS is the standard technique to specify page layout, our solution uses the CSS as the basis for detecting visual similarities among web pages. We prototyped our approach as a Google Chrome extension and used it to rate the suspiciousness of web pages. The prototype shows the correctness and accuracy of our approach with a relatively low performance overhead.
Author Tao Wei
Pei Li
Zhenkai Liang
Jian Mao
Kun Li
Author_xml – sequence: 1
  surname: Jian Mao
  fullname: Jian Mao
  organization: Sch. of Electron. & Inf. Eng., BeiHang Univ., Beijing, China
– sequence: 2
  surname: Pei Li
  fullname: Pei Li
  organization: Sch. of Electron. & Inf. Eng., BeiHang Univ., Beijing, China
– sequence: 3
  surname: Kun Li
  fullname: Kun Li
  organization: Sch. of Electron. & Inf. Eng., BeiHang Univ., Beijing, China
– sequence: 4
  surname: Tao Wei
  fullname: Tao Wei
  organization: Inst. of Comput. Sci. & Technol., Peking Univ., Beijing, China
– sequence: 5
  surname: Zhenkai Liang
  fullname: Zhenkai Liang
  organization: Sch. of Comput., Nat. Univ. of Singapore, Singapore, Singapore
BookMark eNo9j7FOwzAURY0EA5SuLCz5gbbPcezEbKUQqFQBUilr9Bo_qKXEqWJHKH_fVEFM9w73XOncsEvXOGLsjsOcc9CL9duq2c5j4GLOJb9gU51mkCotE51lcM22j2jDssK2foieKFAZrPuJPg7WH85lawP5aOfHXtthaEMfWRflnTNYkwtYRV_Wd0PkhKFryd-yq2-sPE3_csJ2-fPn6nW2eX9Zr5abmeUC-MxwzDDNNBiZSgTaSzRGYoLSJCUpo02sS4UqzcweNIoklgkBqlgIkZZAYsIW42_njtj_YlUVx9bW2PYFh-KsX1hXNr446xeD_kDcj4Qlov-xUgKkSMQJp99c3Q
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
DOI 10.1109/INCoS.2013.151
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès ENAC - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Libary (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISBN 9780769549880
0769549888
EndPage 795
ExternalDocumentID oai:scholarbank.nus.edu.sg:10635/78040
6630534
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ADTOC
UNPAY
ID FETCH-LOGICAL-i1301-d1a8a7890d575a0eb5add5a4a5d4ce6d9d29c6a678db09a34254e0a623337c0e3
IEDL.DBID RIE
IngestDate Tue Aug 26 13:35:04 EDT 2025
Thu Jun 29 18:37:30 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1301-d1a8a7890d575a0eb5add5a4a5d4ce6d9d29c6a678db09a34254e0a623337c0e3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/78040
PageCount 6
ParticipantIDs unpaywall_primary_10_1109_incos_2013_151
ieee_primary_6630534
PublicationCentury 2000
PublicationDate 2013-Sept.
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-Sept.
PublicationDecade 2010
PublicationTitle 2013 5th International Conference on Intelligent Networking and Collaborative Systems
PublicationTitleAbbrev incos
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7792686
Snippet In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that...
SourceID unpaywall
ieee
SourceType Open Access Repository
Publisher
StartPage 790
SubjectTerms Antiphishing
Browsers
Cascading style sheets
CSS
Feature extraction
Layout
Visualization
Web pages
Web Security
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1jO4gXlU2cTMnBg5d2SZv0h7f5YwzBMZmTeSpJmmnZVodrEf3r_dJ2U_CyUwsJpeRL-r3X5L0PoQvuq5ALX1t8NvMsJii1RMCk5bNYB2TmMkcZofDD0BtM2P2UT2toUwSxYnRSpHM7zUsnwfVrt3QcgBUO6bFrLHOApDc8Dui7jhqT4aj3UvkxUhJ2jauBMeKmrk3N_mNRNWUf7eXpSnx9isXiTwLpH6DHjQynPDcyt_NM2ur7vyvjzu92iFq_cj082iaiI1TTaRONr0WS9eBJyyt8q81WAbTh0Vv5zwmPAWqucXFgAO6XCXQEPI6TFPeNNqS0_MfPyTqHi8GJOfDyFpr0755uBlZVQcFKIDdRK6YiEEbqGgMqE0RLDp8zLpjgMVPai8PYCZUnIGHFkoQCIsOZJgIgkev6imj3GNXT91SfICwd6hlvfMdRHqMykIZ7hMBwtZKcKNlGTTPO0ao0yYgAycD6Zm10uR33bVtBPEgYFZGKTKQiiNTp7l07qJ595PoM8EAmz6sp8APf4rmu
  priority: 102
  providerName: Unpaywall
Title BaitAlarm: Detecting Phishing Sites Using Similarity in Fundamental Visual Features
URI https://ieeexplore.ieee.org/document/6630534
http://scholarbank.nus.edu.sg/handle/10635/78040
UnpaywallVersion submittedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AHtSLGjDig-zBgwcLfez24Q0fhJhASBCDp2Z3u8RGKETaGP31zrZYjfHgqZvspm1mmn4zO_N9C3DOPBkw7imDzWauQbllGdynwvBopHxz5lBbaqLwYOj2J_R-yqYVuCy5MEqpvPlMtfUwr-VHS5nprbIOoiN-M7QKVc93C67WRofRMoMOZsHLsW7WctqWrjvmp6XswnaWrPj7G5_PfwBHbw8GX48s-kVe2lkq2vLjlxrjf99pHxrfFD0yKsHnACoqqcP4msdpF3PVxRW5Vbo8gHNk9FzsM5ExhpdrkjcJ4HgR40KMwUmckJ7mgxQy_-QxXmd40bFhhrl4Aya9u4ebvrE5NcGIEY8sI7K4zzW9NcJIjJtKMPyFMU45i6hUbhREdiBdjiAVCTPg6A1GlckxDHIcT5rKOYRaskzUERBhW67Ww7dt6VJL-ELnGwFmtUoKZkrRhLo2SLgqhDHCjS2acFHavJzLkw0zCLXmxDrUXgrRS8d_3-EEduz82Andy3UKtfQ1U2cI_qlo5V5vwdZkOOo-fQLb_7Mt
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtCLGjDicw8ePNjSx25pvfkiqEBIAOOt2d0usREKERqjv97ZFqsxHjx1k23aZmbT-b6dmW8BTllTBow3lcHGY8-g3LYN7lNhNGmkfGvsUkfqRuFuz2uP6P0TeyrBedELo5TKis-UqYdZLj-ayVRvlTUwOuKaoWuwziilLO_WWikx2lbQQB48G-hyLde0deYxOy9lEyppMufvb3wy-RE6WlvQ_XppXjHyYqZLYcqPX3qM__2qbah9N-mRfhF-dqCkkioMrni8vES2Or0gN0onCHCO9J_znSYyQIC5IFmZAI6nMd6IKJzECWnpjpBc6J88xosULxodpsjGazBq3Q6v28bq3AQjxohkG5HNfa4bXCPEYtxSguFPjHHKWUSl8qIgcgLpcQxTkbACjv5gVFkcgZDrNqWl3F0oJ7NE7QERju1pRXzHkR61hS804wiQ1yopmCVFHaraIOE8l8YIV7aow1lh82IuoxtWEGrViUWovRSil_b_fsIJVNrDbifs3PUeDmDDyQ6h0JVdh1BevqbqCKHAUhxnK-ATwIq0yg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1jO4gXlU2cTMnBg5d2SZv0h7f5YwzBMZmTeSpJmmnZVodrEf3r_dJ2U_CyUwsJpeRL-r3X5L0PoQvuq5ALX1t8NvMsJii1RMCk5bNYB2TmMkcZofDD0BtM2P2UT2toUwSxYnRSpHM7zUsnwfVrt3QcgBUO6bFrLHOApDc8Dui7jhqT4aj3UvkxUhJ2jauBMeKmrk3N_mNRNWUf7eXpSnx9isXiTwLpH6DHjQynPDcyt_NM2ur7vyvjzu92iFq_cj082iaiI1TTaRONr0WS9eBJyyt8q81WAbTh0Vv5zwmPAWqucXFgAO6XCXQEPI6TFPeNNqS0_MfPyTqHi8GJOfDyFpr0755uBlZVQcFKIDdRK6YiEEbqGgMqE0RLDp8zLpjgMVPai8PYCZUnIGHFkoQCIsOZJgIgkev6imj3GNXT91SfICwd6hlvfMdRHqMykIZ7hMBwtZKcKNlGTTPO0ao0yYgAycD6Zm10uR33bVtBPEgYFZGKTKQiiNTp7l07qJ595PoM8EAmz6sp8APf4rmu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+5th+International+Conference+on+Intelligent+Networking+and+Collaborative+Systems&rft.atitle=BaitAlarm%3A+Detecting+Phishing+Sites+Using+Similarity+in+Fundamental+Visual+Features&rft.au=Jian+Mao&rft.au=Pei+Li&rft.au=Kun+Li&rft.au=Tao+Wei&rft.date=2013-09-01&rft.pub=IEEE&rft.spage=790&rft.epage=795&rft_id=info:doi/10.1109%2FINCoS.2013.151&rft.externalDocID=6630534