Unsupervised Fuzzy C-Means-Based Approach for Automatic Breast Tumor Segmentation in DCE-MRI

Breast cancer remains one of the most prevalent and life-threatening diseases worldwide, being the most frequently diagnosed cancer among women and the second leading cause of cancer-related mortality. Precise tumor segmentation is essential for breast cancer assessment, as it enables accurate estim...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Symposium on Computer-Based Medical Systems pp. 49 - 52
Main Authors Gonzalez, Paula Puerta, Marcos, Pablo Garcia, Arias, Sara Fernandez, Suarez, Rebeca Oliveira, Lorenzo, Guillermo, Gomez, Hector, del Camino, Covadonga, Villar, Jose R., Rio-Alvarez, Angel, Gonzalez, Victor M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.06.2025
Subjects
Online AccessGet full text
ISSN2372-9198
DOI10.1109/CBMS65348.2025.00019

Cover

Abstract Breast cancer remains one of the most prevalent and life-threatening diseases worldwide, being the most frequently diagnosed cancer among women and the second leading cause of cancer-related mortality. Precise tumor segmentation is essential for breast cancer assessment, as it enables accurate estimation of tumor size, monitoring of disease progression, and evaluation of treatment effectiveness. Despite the importance of this task, the development of reliable automatic methods is hindered by the scarcity of fully annotated datasets, which makes manual labeling both time-consuming and subject to inter-observer variability. In this study, we propose an unsupervised 3D tumor segmentation method based on Fuzzy C-Means (FCM) clustering, specifically designed for volumetric Dynamic Contrast-Enhanced MRI (DCE-MRI) of the breast. Unlike supervised deep learning approaches, our method does not require manual annotations for training, making it especially valuable in scenarios with limited labeled data. The proposed pipeline combines preprocessing, region-of-interest extraction, and FCM-based clustering to generate accurate segmentation masks with minimal human intervention. We evaluated our approach using clinical data from the ACRIN-6698 dataset, comparing the automatic segmentations against expert manual annotations. The method achieved high performance across multiple metrics, including accuracy, precision, recall, specificity, Dice-Sørensen coefficient (DSC), and Jaccard index (IoU). These results demonstrate the feasibility of unsupervised clustering techniques for volumetric breast tumor segmentation, offering a promising alternative to supervised methods in clinical contexts where annotated data is limited.
AbstractList Breast cancer remains one of the most prevalent and life-threatening diseases worldwide, being the most frequently diagnosed cancer among women and the second leading cause of cancer-related mortality. Precise tumor segmentation is essential for breast cancer assessment, as it enables accurate estimation of tumor size, monitoring of disease progression, and evaluation of treatment effectiveness. Despite the importance of this task, the development of reliable automatic methods is hindered by the scarcity of fully annotated datasets, which makes manual labeling both time-consuming and subject to inter-observer variability. In this study, we propose an unsupervised 3D tumor segmentation method based on Fuzzy C-Means (FCM) clustering, specifically designed for volumetric Dynamic Contrast-Enhanced MRI (DCE-MRI) of the breast. Unlike supervised deep learning approaches, our method does not require manual annotations for training, making it especially valuable in scenarios with limited labeled data. The proposed pipeline combines preprocessing, region-of-interest extraction, and FCM-based clustering to generate accurate segmentation masks with minimal human intervention. We evaluated our approach using clinical data from the ACRIN-6698 dataset, comparing the automatic segmentations against expert manual annotations. The method achieved high performance across multiple metrics, including accuracy, precision, recall, specificity, Dice-Sørensen coefficient (DSC), and Jaccard index (IoU). These results demonstrate the feasibility of unsupervised clustering techniques for volumetric breast tumor segmentation, offering a promising alternative to supervised methods in clinical contexts where annotated data is limited.
Author Rio-Alvarez, Angel
Gonzalez, Victor M.
Gonzalez, Paula Puerta
Marcos, Pablo Garcia
Suarez, Rebeca Oliveira
Lorenzo, Guillermo
Gomez, Hector
del Camino, Covadonga
Villar, Jose R.
Arias, Sara Fernandez
Author_xml – sequence: 1
  givenname: Paula Puerta
  orcidid: 0009-0002-1968-5372
  surname: Gonzalez
  fullname: Gonzalez, Paula Puerta
  organization: University of Oviedo,Electrical Engineering Department,Oviedo,Spain
– sequence: 2
  givenname: Pablo Garcia
  orcidid: 0009-0007-7471-6211
  surname: Marcos
  fullname: Marcos, Pablo Garcia
  organization: University of Oviedo,Computer Science Department,Oviedo,Spain
– sequence: 3
  givenname: Sara Fernandez
  orcidid: 0009-0004-8668-3750
  surname: Arias
  fullname: Arias, Sara Fernandez
  organization: University of Oviedo,Computer Science Department,Oviedo,Spain
– sequence: 4
  givenname: Rebeca Oliveira
  orcidid: 0009-0002-4598-9572
  surname: Suarez
  fullname: Suarez, Rebeca Oliveira
  organization: University of Oviedo,Electrical Engineering Department,Oviedo,Spain
– sequence: 5
  givenname: Guillermo
  orcidid: 0000-0001-9090-190X
  surname: Lorenzo
  fullname: Lorenzo, Guillermo
  organization: University of A Coruña,Department of Mathematics,A Coruña,Spain
– sequence: 6
  givenname: Hector
  orcidid: 0000-0002-2553-9091
  surname: Gomez
  fullname: Gomez, Hector
  organization: School of Mechanical Engineering, Purdue University,West Lafayette,USA
– sequence: 7
  givenname: Covadonga
  surname: del Camino
  fullname: del Camino, Covadonga
  organization: Oviedo Central University Hospital (HUCA),Radiodiagnostic Service,Oviedo,Spain
– sequence: 8
  givenname: Jose R.
  orcidid: 0000-0001-6024-9527
  surname: Villar
  fullname: Villar, Jose R.
  organization: University of Oviedo,Computer Science Department,Oviedo,Spain
– sequence: 9
  givenname: Angel
  orcidid: 0000-0002-8876-4990
  surname: Rio-Alvarez
  fullname: Rio-Alvarez, Angel
  organization: University of Oviedo,Computer Science Department,Oviedo,Spain
– sequence: 10
  givenname: Victor M.
  orcidid: 0000-0002-0937-1882
  surname: Gonzalez
  fullname: Gonzalez, Victor M.
  organization: University of Oviedo,Electrical Engineering Department,Oviedo,Spain
BookMark eNotkN9KwzAcRqMouM29wS7yApn55U-bXG5108GG4LY7YaRJqhWblqYVtqe3olcfnAPn4hujm1AHj9AM6ByA6odsudsnkgs1Z5TJOaUU9BWa6lQrzkGyBKi6RiPGU0Y0aHWHxjF-UioHKUfo7Rhi3_j2u4ze4XV_uZxxRnbehEiW5pctmqatjf3ARd3iRd_VlelKi5etN7HDh74a8N6_Vz50g6gDLgN-zFZk97q5R7eF-Yp--r8TdFyvDtkz2b48bbLFlpTAtCbKAcsdWCdlDkoxlqdpIqQFAc5SQXNWmJyCHbizTPDE5kUqjE60Zo5Cyido9tctvfenpi0r055Pwz1SpULyHzt4VLE
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CBMS65348.2025.00019
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9798331526108
EISSN 2372-9198
EndPage 52
ExternalDocumentID 11058745
Genre orig-research
GrantInformation_xml – fundername: Gobierno del Principado de Asturias
  grantid: SV-PA-21-AYUD/2021/50994,AYUD/2023/36906/UO-077
  funderid: 10.13039/100011941
– fundername: Universidad de Oviedo
  grantid: FUO-23-008,FUO-22-450
  funderid: 10.13039/501100006382
– fundername: Spanish State Research Agency
  grantid: PID2023-146257OB-I00
  funderid: 10.13039/501100011033
– fundername: University Insitute of Industrial Technology of Asturias
  grantid: SV-21-GIJON-1-19,SV-22-GIJON-1-19,SV-22-GIJON-1-22,SV-23-GIJON-1-17,SV-24-GIJON-1-18
  funderid: 10.13039/501100010551
– fundername: Spanish Ministry of Science and Innovation
  grantid: PID2020-112726RB-I00
  funderid: 10.13039/501100004837
GroupedDBID 29F
6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i1299-8d12bd1cd55b18822b77645c141dc040b2fab01c2b7dc2436cbf74a96992d0173
IEDL.DBID RIE
IngestDate Thu Jul 10 06:33:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1299-8d12bd1cd55b18822b77645c141dc040b2fab01c2b7dc2436cbf74a96992d0173
ORCID 0000-0001-6024-9527
0009-0004-8668-3750
0000-0002-8876-4990
0009-0002-4598-9572
0009-0002-1968-5372
0000-0001-9090-190X
0000-0002-2553-9091
0009-0007-7471-6211
0000-0002-0937-1882
PageCount 4
ParticipantIDs ieee_primary_11058745
PublicationCentury 2000
PublicationDate 2025-June-18
PublicationDateYYYYMMDD 2025-06-18
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-18
  day: 18
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Symposium on Computer-Based Medical Systems
PublicationTitleAbbrev CBMS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053155
Score 2.2977622
Snippet Breast cancer remains one of the most prevalent and life-threatening diseases worldwide, being the most frequently diagnosed cancer among women and the second...
SourceID ieee
SourceType Publisher
StartPage 49
SubjectTerms Accuracy
Annotations
Breast cancer
Breast tumors
DCE
Fully-automatic segmentation
Fuzzy C-Means
Magnetic resonance imaging
Manuals
MRI
Pipelines
Reliability
Three-dimensional displays
Training
tumor segmentation
Title Unsupervised Fuzzy C-Means-Based Approach for Automatic Breast Tumor Segmentation in DCE-MRI
URI https://ieeexplore.ieee.org/document/11058745
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LagIxFA3VRemqL0vfZNFt1GQmyWSpU8UWRkpVcFGQyWOKFEepM4v69U3i2JZCobvhbibkcc8lOedcAO64U19SoRALeIZCbQgSkZQIpxHLlLAVr-9akgzZYBI-Tum0Eqt7LYwxxpPPTNN9-rd8vVSluyprWaiizp69Bmo8Ylux1i7t2r1EaaWNw23RirvJiNHA07eIuzfxZjo_Oqh4AOkfguHu11veyFuzLGRTbX65Mv57bEeg8a3Vg09fKHQM9kx-AvaT6sn8FLxM8nW5chlhbTTsl5vNB4xRYixEoW7qYp3KVhza-hV2ymLpXVxh19HVCzguFzY8Mq-LSqWUw3kO7-MeSp4fGmDS743jAapaKqC5BXaBIo2J1FhpSiW2xTWRnLOQKhxirex5liRLZRsrG9eKhAFTMuNhKpgQRNvDG5yBer7MzTmAtrJSqYqEUUSEhGcRNTLkqU1aQcptHXYBGm6WZquta8ZsN0GXf8SvwIFbKUfDwtE1qBfvpbmxgF_IW7_Qn0uRqOA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFG0UE3XlC-PbLtwWaKedmS4BIaAMMQIJCxMyfYwhhoHIzEK-3rYMakxM3E3uZpo-7rlpzzkXgLvAqi8Zl8j3ggRRpQnioRAIx6GfSG4qXte1JOr7nRF9GLNxIVZ3WhittSOf6Yr9dG_5ai5ze1VWNVDFrD37NthhlFK2lmttEq_ZTYwV6jhc49VmIxr4zHMELmJvTpydzo8eKg5C2gegv_n5mjnyVskzUZGrX76M_x7dISh_q_Xg0xcOHYEtnR6D3ah4ND8BL6N0mS9sTlhqBdv5avUBmyjSBqRQI7axemEsDk0FC-t5Nnc-rrBhCesZHOYzEx7o11mhU0rhNIX3zRaKnrtlMGq3hs0OKpoqoKmBdo5ChYlQWCrGBDblNRFB4FMmMcVKmhMtSBKLGpYmriShni9FEtCY-5wTZY6vdwpK6TzVZwCa2krGMuRaEk5JkIRMCxrEJm15cWAqsXNQtrM0Wax9MyabCbr4I34L9jrDqDfpdfuPl2DfrpolZeHwCpSy91xfG_jPxI1b9E9UUKwt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Computer-Based+Medical+Systems&rft.atitle=Unsupervised+Fuzzy+C-Means-Based+Approach+for+Automatic+Breast+Tumor+Segmentation+in+DCE-MRI&rft.au=Gonzalez%2C+Paula+Puerta&rft.au=Marcos%2C+Pablo+Garcia&rft.au=Arias%2C+Sara+Fernandez&rft.au=Suarez%2C+Rebeca+Oliveira&rft.date=2025-06-18&rft.pub=IEEE&rft.eissn=2372-9198&rft.spage=49&rft.epage=52&rft_id=info:doi/10.1109%2FCBMS65348.2025.00019&rft.externalDocID=11058745