Axial Sphere Loss: Encouraging Open-Space Risk Minimization in Face Identification Tasks

Open-set face recognition challenges biometric systems by requiring them to identify registered subjects while rejecting unregistered individuals. This task is particularly demanding in watchlist scenarios, where biometric systems must focus on subjects of interest and disregard irrelevant faces. To...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference and Workshops on Automatic Face and Gesture Recognition : FG pp. 1 - 10
Main Authors Vareto, Rafael Henrique, Schwartz, William Robson
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.05.2025
Subjects
Online AccessGet full text
ISSN2770-8330
DOI10.1109/FG61629.2025.11099113

Cover

Abstract Open-set face recognition challenges biometric systems by requiring them to identify registered subjects while rejecting unregistered individuals. This task is particularly demanding in watchlist scenarios, where biometric systems must focus on subjects of interest and disregard irrelevant faces. To address real-world face applications, this study associates quickly trainable adaptation networks with a logit-and-distance-based cost function that explores non-gallery samples in favor of minimizing the open-space risk. These negative instances are either specified in dataset protocols or synthetically built at training time. The proposed Axial Sphere Loss (ASL) shifts each class into pre-defined regions in the latent space and mutually pushes non-gallery samples toward the space origin, forming spherical containers around each class template at inference time. We show that training an adapter network with ASL does not hinder closed-set recognition scores but significantly boosts open-set identification rates, achieving state-of-the-art performance on three well-known face benchmarks, namely, LFW, IJB-C, and UCCS datasets.
AbstractList Open-set face recognition challenges biometric systems by requiring them to identify registered subjects while rejecting unregistered individuals. This task is particularly demanding in watchlist scenarios, where biometric systems must focus on subjects of interest and disregard irrelevant faces. To address real-world face applications, this study associates quickly trainable adaptation networks with a logit-and-distance-based cost function that explores non-gallery samples in favor of minimizing the open-space risk. These negative instances are either specified in dataset protocols or synthetically built at training time. The proposed Axial Sphere Loss (ASL) shifts each class into pre-defined regions in the latent space and mutually pushes non-gallery samples toward the space origin, forming spherical containers around each class template at inference time. We show that training an adapter network with ASL does not hinder closed-set recognition scores but significantly boosts open-set identification rates, achieving state-of-the-art performance on three well-known face benchmarks, namely, LFW, IJB-C, and UCCS datasets.
Author Schwartz, William Robson
Vareto, Rafael Henrique
Author_xml – sequence: 1
  givenname: Rafael Henrique
  surname: Vareto
  fullname: Vareto, Rafael Henrique
  email: rafaelvareto@dcc.ufmg.br
  organization: Universidade Federal de Minas Gerais (UFMG)
– sequence: 2
  givenname: William Robson
  surname: Schwartz
  fullname: Schwartz, William Robson
  email: william@dcc.ufmg.br
  organization: Universidade Federal de Minas Gerais (UFMG)
BookMark eNo10F1LwzAYBeAoCs7Zf6CQP9CZjyZNvBtjnYPKwE3wbrxN0_m6LS3NBPXX-zG9OvAcOBfnkpyFNnhCbjgbcc7sbTHTXAs7EkyoX7GcyxOS2NwaKblSMuPmlAxEnrP0W9gFSWJ8ZYxJxhmXckCex-8IO7rsXnzvadnGeEenwbVvPWwwbOii8yFdduA8fcS4pQ8YcI-fcMA2UAy0-GnmtQ8HbNAdeQVxG6_IeQO76JO_HJKnYrqa3KflYjafjMsUubA69cawumqMMy6XSlsFVSVMnQFArZ1UmdFCWK4hb6BS4AzUlfK5AS0yx2Qth-T6uIve-3XX4x76j_X_GfILs71VMw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/FG61629.2025.11099113
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798331553418
EISSN 2770-8330
EndPage 10
ExternalDocumentID 11099113
Genre orig-research
GrantInformation_xml – fundername: Samsung
  funderid: 10.13039/100004358
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i1296-e880dbf8c8c735695abb28d4aaad6c3548622916a7fab5ac8adb5e78a624c03d3
IEDL.DBID RIE
IngestDate Wed Aug 13 06:23:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i1296-e880dbf8c8c735695abb28d4aaad6c3548622916a7fab5ac8adb5e78a624c03d3
PageCount 10
ParticipantIDs ieee_primary_11099113
PublicationCentury 2000
PublicationDate 2025-May-26
PublicationDateYYYYMMDD 2025-05-26
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-26
  day: 26
PublicationDecade 2020
PublicationTitle IEEE International Conference and Workshops on Automatic Face and Gesture Recognition : FG
PublicationTitleAbbrev FG
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003010133
Score 1.9129348
Snippet Open-set face recognition challenges biometric systems by requiring them to identify registered subjects while rejecting unregistered individuals. This task is...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
Containers
Cost function
Face recognition
Gesture recognition
Object recognition
Protocols
Risk minimization
Training
Tuning
Title Axial Sphere Loss: Encouraging Open-Space Risk Minimization in Face Identification Tasks
URI https://ieeexplore.ieee.org/document/11099113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uTz7Ny8Q7efC13ZY0aeubyOoQHeI22Ns4uRTKsIrdQPz1nqTdREHwrbQJLUlOv3P7ziHkCkEnBbQbXNA9dq4bCADNkAB1AQTriPfB-izfsRzNovu5mDdkdc-Fsdb65DMbuksfyzeveu1cZT1XHROFk7dIK05kTdbaOlS4q5bGecPSwZG97E4OJHNsFCbCzdwfXVQ8iGQdMt68vs4dWYbrlQr156_KjP_-vj3S_ebr0actEu2THVsekE6jYNJGfKtDMr_5wONGJ66UgKUPiI_XdFhqPE6-VxF12SXBBK1oS5-Lakkfi7J4aYiatChp5p7U1N688fXRKVTLqktm2XB6Owqa1gpBgQAvA4tia1Se6ETHXMhUgFIsMREAGKk5mjGSMdQcIc5BCdAJGCVsnIBkke5zw49Iu3wt7TGhudCJGpgBt0ri30BAnqOSlmtgkUkhjU5I163U4q2unrHYLNLpH_fPyK7bMBehZ_KctFfva3uBwL9Sl37DvwAB46wg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB60HvRUl4q7c_CaLpkliTeRxqptEdtCb-XNEgjFVEwL4q_3TZIqCoK3MMnAMDMv39u-9wi5QtCJAO0GF3QPnOsGPEAzxENdAMGaszbYIst3KHsT_jAV04qsXnBhrLVF8pltuscilm8WeuVcZS1XHROFk22SLcE5FyVd68ulwly9NMYqng5-24rvZEf6jo_ii-Z69o8-KgWMxHUyXC-gzB6ZN1dL1dQfv2oz_nuFu6TxzdijT19YtEc2bLZP6pWKSSsBzg_I9OYdLxwduWIClvYRIa9pN9N4oYpuRdTll3gjtKMtfU7zOR2kWfpSUTVpmtHYvSnJvUnl7aNjyOd5g0zi7vi251XNFbwUIV56FgXXqCTUoQ6YkJEApfzQcAAwUjM0ZKTvo-4IQQJKgA7BKGGDEKTPdZsZdkhq2SKzR4QmQoeqYzrMKon_AwFJgmpaosHnJoKIH5OG26nZa1k_Y7bepJM_xi_Jdm886M_698PHU7LjDs_F6315RmrLt5U9RzVgqS6Kw_8EMx6vbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+and+Workshops+on+Automatic+Face+and+Gesture+Recognition+%3A+FG&rft.atitle=Axial+Sphere+Loss%3A+Encouraging+Open-Space+Risk+Minimization+in+Face+Identification+Tasks&rft.au=Vareto%2C+Rafael+Henrique&rft.au=Schwartz%2C+William+Robson&rft.date=2025-05-26&rft.pub=IEEE&rft.eissn=2770-8330&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FFG61629.2025.11099113&rft.externalDocID=11099113