Axial Sphere Loss: Encouraging Open-Space Risk Minimization in Face Identification Tasks
Open-set face recognition challenges biometric systems by requiring them to identify registered subjects while rejecting unregistered individuals. This task is particularly demanding in watchlist scenarios, where biometric systems must focus on subjects of interest and disregard irrelevant faces. To...
Saved in:
| Published in | IEEE International Conference and Workshops on Automatic Face and Gesture Recognition : FG pp. 1 - 10 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
26.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2770-8330 |
| DOI | 10.1109/FG61629.2025.11099113 |
Cover
| Abstract | Open-set face recognition challenges biometric systems by requiring them to identify registered subjects while rejecting unregistered individuals. This task is particularly demanding in watchlist scenarios, where biometric systems must focus on subjects of interest and disregard irrelevant faces. To address real-world face applications, this study associates quickly trainable adaptation networks with a logit-and-distance-based cost function that explores non-gallery samples in favor of minimizing the open-space risk. These negative instances are either specified in dataset protocols or synthetically built at training time. The proposed Axial Sphere Loss (ASL) shifts each class into pre-defined regions in the latent space and mutually pushes non-gallery samples toward the space origin, forming spherical containers around each class template at inference time. We show that training an adapter network with ASL does not hinder closed-set recognition scores but significantly boosts open-set identification rates, achieving state-of-the-art performance on three well-known face benchmarks, namely, LFW, IJB-C, and UCCS datasets. |
|---|---|
| AbstractList | Open-set face recognition challenges biometric systems by requiring them to identify registered subjects while rejecting unregistered individuals. This task is particularly demanding in watchlist scenarios, where biometric systems must focus on subjects of interest and disregard irrelevant faces. To address real-world face applications, this study associates quickly trainable adaptation networks with a logit-and-distance-based cost function that explores non-gallery samples in favor of minimizing the open-space risk. These negative instances are either specified in dataset protocols or synthetically built at training time. The proposed Axial Sphere Loss (ASL) shifts each class into pre-defined regions in the latent space and mutually pushes non-gallery samples toward the space origin, forming spherical containers around each class template at inference time. We show that training an adapter network with ASL does not hinder closed-set recognition scores but significantly boosts open-set identification rates, achieving state-of-the-art performance on three well-known face benchmarks, namely, LFW, IJB-C, and UCCS datasets. |
| Author | Schwartz, William Robson Vareto, Rafael Henrique |
| Author_xml | – sequence: 1 givenname: Rafael Henrique surname: Vareto fullname: Vareto, Rafael Henrique email: rafaelvareto@dcc.ufmg.br organization: Universidade Federal de Minas Gerais (UFMG) – sequence: 2 givenname: William Robson surname: Schwartz fullname: Schwartz, William Robson email: william@dcc.ufmg.br organization: Universidade Federal de Minas Gerais (UFMG) |
| BookMark | eNo10F1LwzAYBeAoCs7Zf6CQP9CZjyZNvBtjnYPKwE3wbrxN0_m6LS3NBPXX-zG9OvAcOBfnkpyFNnhCbjgbcc7sbTHTXAs7EkyoX7GcyxOS2NwaKblSMuPmlAxEnrP0W9gFSWJ8ZYxJxhmXckCex-8IO7rsXnzvadnGeEenwbVvPWwwbOii8yFdduA8fcS4pQ8YcI-fcMA2UAy0-GnmtQ8HbNAdeQVxG6_IeQO76JO_HJKnYrqa3KflYjafjMsUubA69cawumqMMy6XSlsFVSVMnQFArZ1UmdFCWK4hb6BS4AzUlfK5AS0yx2Qth-T6uIve-3XX4x76j_X_GfILs71VMw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/FG61629.2025.11099113 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9798331553418 |
| EISSN | 2770-8330 |
| EndPage | 10 |
| ExternalDocumentID | 11099113 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Samsung funderid: 10.13039/100004358 |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i1296-e880dbf8c8c735695abb28d4aaad6c3548622916a7fab5ac8adb5e78a624c03d3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 13 06:23:10 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i1296-e880dbf8c8c735695abb28d4aaad6c3548622916a7fab5ac8adb5e78a624c03d3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_11099113 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-May-26 |
| PublicationDateYYYYMMDD | 2025-05-26 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference and Workshops on Automatic Face and Gesture Recognition : FG |
| PublicationTitleAbbrev | FG |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003010133 |
| Score | 1.9129348 |
| Snippet | Open-set face recognition challenges biometric systems by requiring them to identify registered subjects while rejecting unregistered individuals. This task is... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Benchmark testing Containers Cost function Face recognition Gesture recognition Object recognition Protocols Risk minimization Training Tuning |
| Title | Axial Sphere Loss: Encouraging Open-Space Risk Minimization in Face Identification Tasks |
| URI | https://ieeexplore.ieee.org/document/11099113 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uTz7Ny8Q7efC13ZY0aeubyOoQHeI22Ns4uRTKsIrdQPz1nqTdREHwrbQJLUlOv3P7ziHkCkEnBbQbXNA9dq4bCADNkAB1AQTriPfB-izfsRzNovu5mDdkdc-Fsdb65DMbuksfyzeveu1cZT1XHROFk7dIK05kTdbaOlS4q5bGecPSwZG97E4OJHNsFCbCzdwfXVQ8iGQdMt68vs4dWYbrlQr156_KjP_-vj3S_ebr0actEu2THVsekE6jYNJGfKtDMr_5wONGJ66UgKUPiI_XdFhqPE6-VxF12SXBBK1oS5-Lakkfi7J4aYiatChp5p7U1N688fXRKVTLqktm2XB6Owqa1gpBgQAvA4tia1Se6ETHXMhUgFIsMREAGKk5mjGSMdQcIc5BCdAJGCVsnIBkke5zw49Iu3wt7TGhudCJGpgBt0ri30BAnqOSlmtgkUkhjU5I163U4q2unrHYLNLpH_fPyK7bMBehZ_KctFfva3uBwL9Sl37DvwAB46wg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB60HvRUl4q7c_CaLpkliTeRxqptEdtCb-XNEgjFVEwL4q_3TZIqCoK3MMnAMDMv39u-9wi5QtCJAO0GF3QPnOsGPEAzxENdAMGaszbYIst3KHsT_jAV04qsXnBhrLVF8pltuscilm8WeuVcZS1XHROFk22SLcE5FyVd68ulwly9NMYqng5-24rvZEf6jo_ii-Z69o8-KgWMxHUyXC-gzB6ZN1dL1dQfv2oz_nuFu6TxzdijT19YtEc2bLZP6pWKSSsBzg_I9OYdLxwduWIClvYRIa9pN9N4oYpuRdTll3gjtKMtfU7zOR2kWfpSUTVpmtHYvSnJvUnl7aNjyOd5g0zi7vi251XNFbwUIV56FgXXqCTUoQ6YkJEApfzQcAAwUjM0ZKTvo-4IQQJKgA7BKGGDEKTPdZsZdkhq2SKzR4QmQoeqYzrMKon_AwFJgmpaosHnJoKIH5OG26nZa1k_Y7bepJM_xi_Jdm886M_698PHU7LjDs_F6315RmrLt5U9RzVgqS6Kw_8EMx6vbQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+and+Workshops+on+Automatic+Face+and+Gesture+Recognition+%3A+FG&rft.atitle=Axial+Sphere+Loss%3A+Encouraging+Open-Space+Risk+Minimization+in+Face+Identification+Tasks&rft.au=Vareto%2C+Rafael+Henrique&rft.au=Schwartz%2C+William+Robson&rft.date=2025-05-26&rft.pub=IEEE&rft.eissn=2770-8330&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FFG61629.2025.11099113&rft.externalDocID=11099113 |