Non-deterministic Local Search Methods for Feature Selection: An Experimental Study

The dimensionality reduction by feature selection is one of the fundamental steps in the pre-processing data stage in the intelligent data analysis. Feature selection (FS) literature embodies a wide spectrum of algorithms, methods and strategies, but mostly all fall into two classes, the well known...

Full description

Saved in:
Bibliographic Details
Published in2014 13th Mexican International Conference on Artificial Intelligence pp. 69 - 74
Main Authors Fernandez-Perez, Marina P., Gonzalez-Navarro, Felix F.
Format Conference Proceeding
LanguageEnglish
Published IEEE 25.08.2015
Subjects
Online AccessGet full text
ISBN9781467370103
146737010X
DOI10.1109/MICAI.2014.16

Cover

Abstract The dimensionality reduction by feature selection is one of the fundamental steps in the pre-processing data stage in the intelligent data analysis. Feature selection (FS) literature embodies a wide spectrum of algorithms, methods and strategies, but mostly all fall into two classes, the well known wrappers and filters. The decision of which feature or variable is selected or discarded from the best current subset is still subject of research nowadays. In this paper, an experimental study about non-deterministic local search methods as main engine to this decision making is presented. The Simulated Annealing Algorithm, the Genetic Algorithm, the Tabu Search and the Threshold Accepting Algorithm are analyzed. They are used to select subset of features on several real and artificial data sets with different configurations -- i.e. Continuous and discrete data, high-low number of cases/features -- in a wrapper fashion. The Nearest Neighbor Classifier, the Linear and Quadratic Discriminant Classifier, the Naive Bayes classifier and the Support Vector Machine are evaluated as the performance function in the wrapper scheme.
AbstractList The dimensionality reduction by feature selection is one of the fundamental steps in the pre-processing data stage in the intelligent data analysis. Feature selection (FS) literature embodies a wide spectrum of algorithms, methods and strategies, but mostly all fall into two classes, the well known wrappers and filters. The decision of which feature or variable is selected or discarded from the best current subset is still subject of research nowadays. In this paper, an experimental study about non-deterministic local search methods as main engine to this decision making is presented. The Simulated Annealing Algorithm, the Genetic Algorithm, the Tabu Search and the Threshold Accepting Algorithm are analyzed. They are used to select subset of features on several real and artificial data sets with different configurations -- i.e. Continuous and discrete data, high-low number of cases/features -- in a wrapper fashion. The Nearest Neighbor Classifier, the Linear and Quadratic Discriminant Classifier, the Naive Bayes classifier and the Support Vector Machine are evaluated as the performance function in the wrapper scheme.
Author Fernandez-Perez, Marina P.
Gonzalez-Navarro, Felix F.
Author_xml – sequence: 1
  givenname: Marina P.
  surname: Fernandez-Perez
  fullname: Fernandez-Perez, Marina P.
  email: marina.fernandez@uabc.edu.mx
  organization: Inst. de Ing., Univ. Autonoma de Baja California Mexicali, Mexicali, Mexico
– sequence: 2
  givenname: Felix F.
  surname: Gonzalez-Navarro
  fullname: Gonzalez-Navarro, Felix F.
  email: fernando.gonzalez@uabc.edu.mx
  organization: Inst. de Ing., Univ. Autonoma de Baja California Mexicali, Mexicali, Mexico
BookMark eNotjjFPwzAUhI0ACSgZmVj8B1Les107YauqFiqlMBTmyrFfVEupUyWuRP89QfSW0-l0p--B3cQuEmNPCFNEKF8268V8PRWAaor6imWlKVCZchSAuL5kbaQBBHnHsmEINQhttJJo7tn2o4u5p0T9IcQwpOB41Tnb8i3Z3u35htK-8wNvup6vyKZTT2PVkkuhi698Hvny50h9OFBMf6t08udHdtvYdqDs4hP2vVp-Ld7z6vNtpK3ygEKm3GMhwdXkFZZO2BKwoJn1TWGVluBpJNRSUOGBlLGEygqryHsDjZ7V2ssJe_7_DUS0O44Qtj_vjBCiUEr-Amc9U1E
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MICAI.2014.16
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 9781479999002
1479999008
EndPage 74
ExternalDocumentID 7222844
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i123t-d1830cbed419c2a9018e5adf8a4630de643632e8d0e47ae14a2a4edd70f65b6d3
IEDL.DBID RIE
ISBN 9781467370103
146737010X
IngestDate Wed Jun 26 19:20:58 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-d1830cbed419c2a9018e5adf8a4630de643632e8d0e47ae14a2a4edd70f65b6d3
PageCount 6
ParticipantIDs ieee_primary_7222844
PublicationCentury 2000
PublicationDate 2015-08-25
PublicationDateYYYYMMDD 2015-08-25
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-25
  day: 25
PublicationDecade 2010
PublicationTitle 2014 13th Mexican International Conference on Artificial Intelligence
PublicationTitleAbbrev MICAI
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib026764317
Score 1.5744717
Snippet The dimensionality reduction by feature selection is one of the fundamental steps in the pre-processing data stage in the intelligent data analysis. Feature...
SourceID ieee
SourceType Publisher
StartPage 69
SubjectTerms Feature Selection
Genetic Algorithm
Genetic algorithms
Intelligent Data Analysis
Niobium
Search problems
Simulated Annealing
Sociology
Statistics
Support vector machines
Tabu Search
Threshold Accepting
Title Non-deterministic Local Search Methods for Feature Selection: An Experimental Study
URI https://ieeexplore.ieee.org/document/7222844
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTp34aBHf8sCI08Rx4oQNoVYF0QoJKnWrYvsiIVCKSjLAr-fspB9CDGyJs1jnRO_d5d07Qq58EwQgdMoglIIJpXKmsogzhAKuEYJAO3f-yTQez8TDPJq3yPWmFwYAnPgMPHvp_uWbpa5sqWwgbblCiDZpS5nWvVrrd4fHMrZY6Hq37OwVzDPma0un5j7cemwOrNvAvVV2Cc-OOt-ZrOKAZbRHJust1XqSN68qlae_f7k1_nfP-6S_beGjTxtwOiAtKA5J11LL2pm5R56ny4KZRg3jFumjBTZaK5DpxM2W_qTIaqklitUK8NG7k24VN_S2oMOd6QDUChK_-mQ2Gr7cjVkzYoG9ImSVzOAX7WsFRgSp5hmSgwSizORJJuLQN4AxjUMOifFByAwCkfFMgDHSz-NIxSY8Ip1iWcAxoZh4IfVTfpQoLYADMk-TQx7mElO80MgT0rPRWXzULhqLJjCnfy-fkS4eTmSrtzw6J51yVcEFwn-pLt25_wCtB6yd
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGejER4v4xgMjTlPHjlM2hFq10FRItFK3KrYvEgKlqCQD_HpsJ_0QYmBLnMW6OHrvLu_eIXTj604HmOoSCAQjTMqUyIRTYqCAKgNBoJw7fzwOB1P2OOOzGrpd98IAgBOfgWcv3b98vVCFLZW1hS1XMLaDdrnJKkTZrbU6PTQUoUVD171lp6-YTGO2MnWq7oONy2bb-g0MrbaLeXbY-dZsFQct_X0UrzZVKkrevCKXnvr-5df4310foNamiQ8_r-HpENUgO0INSy5Lb-YmehkvMqIrPYxbxCMLbbjUIOPYTZf-xIbXYksViyWYR-9OvJXd4fsM97bmA2ArSfxqoWm_N3kYkGrIAnk1oJUTbb5pX0nQrNNVNDH0IAKe6DRKWBj4GkxMw4BCpH1gIoEOS2jCQGvhpyGXoQ6OUT1bZHCCsEm9DPmTPo-kYkDBcE-dQhqkwiR5gRanqGmjM_8ofTTmVWDO_l6-RnuDSTyaj4bjp3PUMC-K21ou5Reoni8LuDRkIJdX7gz8APESr-4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+13th+Mexican+International+Conference+on+Artificial+Intelligence&rft.atitle=Non-deterministic+Local+Search+Methods+for+Feature+Selection%3A+An+Experimental+Study&rft.au=Fernandez-Perez%2C+Marina+P.&rft.au=Gonzalez-Navarro%2C+Felix+F.&rft.date=2015-08-25&rft.pub=IEEE&rft.isbn=9781467370103&rft.spage=69&rft.epage=74&rft_id=info:doi/10.1109%2FMICAI.2014.16&rft.externalDocID=7222844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467370103/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467370103/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467370103/sc.gif&client=summon&freeimage=true