Non-deterministic Local Search Methods for Feature Selection: An Experimental Study
The dimensionality reduction by feature selection is one of the fundamental steps in the pre-processing data stage in the intelligent data analysis. Feature selection (FS) literature embodies a wide spectrum of algorithms, methods and strategies, but mostly all fall into two classes, the well known...
Saved in:
Published in | 2014 13th Mexican International Conference on Artificial Intelligence pp. 69 - 74 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
25.08.2015
|
Subjects | |
Online Access | Get full text |
ISBN | 9781467370103 146737010X |
DOI | 10.1109/MICAI.2014.16 |
Cover
Abstract | The dimensionality reduction by feature selection is one of the fundamental steps in the pre-processing data stage in the intelligent data analysis. Feature selection (FS) literature embodies a wide spectrum of algorithms, methods and strategies, but mostly all fall into two classes, the well known wrappers and filters. The decision of which feature or variable is selected or discarded from the best current subset is still subject of research nowadays. In this paper, an experimental study about non-deterministic local search methods as main engine to this decision making is presented. The Simulated Annealing Algorithm, the Genetic Algorithm, the Tabu Search and the Threshold Accepting Algorithm are analyzed. They are used to select subset of features on several real and artificial data sets with different configurations -- i.e. Continuous and discrete data, high-low number of cases/features -- in a wrapper fashion. The Nearest Neighbor Classifier, the Linear and Quadratic Discriminant Classifier, the Naive Bayes classifier and the Support Vector Machine are evaluated as the performance function in the wrapper scheme. |
---|---|
AbstractList | The dimensionality reduction by feature selection is one of the fundamental steps in the pre-processing data stage in the intelligent data analysis. Feature selection (FS) literature embodies a wide spectrum of algorithms, methods and strategies, but mostly all fall into two classes, the well known wrappers and filters. The decision of which feature or variable is selected or discarded from the best current subset is still subject of research nowadays. In this paper, an experimental study about non-deterministic local search methods as main engine to this decision making is presented. The Simulated Annealing Algorithm, the Genetic Algorithm, the Tabu Search and the Threshold Accepting Algorithm are analyzed. They are used to select subset of features on several real and artificial data sets with different configurations -- i.e. Continuous and discrete data, high-low number of cases/features -- in a wrapper fashion. The Nearest Neighbor Classifier, the Linear and Quadratic Discriminant Classifier, the Naive Bayes classifier and the Support Vector Machine are evaluated as the performance function in the wrapper scheme. |
Author | Fernandez-Perez, Marina P. Gonzalez-Navarro, Felix F. |
Author_xml | – sequence: 1 givenname: Marina P. surname: Fernandez-Perez fullname: Fernandez-Perez, Marina P. email: marina.fernandez@uabc.edu.mx organization: Inst. de Ing., Univ. Autonoma de Baja California Mexicali, Mexicali, Mexico – sequence: 2 givenname: Felix F. surname: Gonzalez-Navarro fullname: Gonzalez-Navarro, Felix F. email: fernando.gonzalez@uabc.edu.mx organization: Inst. de Ing., Univ. Autonoma de Baja California Mexicali, Mexicali, Mexico |
BookMark | eNotjjFPwzAUhI0ACSgZmVj8B1Les107YauqFiqlMBTmyrFfVEupUyWuRP89QfSW0-l0p--B3cQuEmNPCFNEKF8268V8PRWAaor6imWlKVCZchSAuL5kbaQBBHnHsmEINQhttJJo7tn2o4u5p0T9IcQwpOB41Tnb8i3Z3u35htK-8wNvup6vyKZTT2PVkkuhi698Hvny50h9OFBMf6t08udHdtvYdqDs4hP2vVp-Ld7z6vNtpK3ygEKm3GMhwdXkFZZO2BKwoJn1TWGVluBpJNRSUOGBlLGEygqryHsDjZ7V2ssJe_7_DUS0O44Qtj_vjBCiUEr-Amc9U1E |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/MICAI.2014.16 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISBN | 9781479999002 1479999008 |
EndPage | 74 |
ExternalDocumentID | 7222844 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i123t-d1830cbed419c2a9018e5adf8a4630de643632e8d0e47ae14a2a4edd70f65b6d3 |
IEDL.DBID | RIE |
ISBN | 9781467370103 146737010X |
IngestDate | Wed Jun 26 19:20:58 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i123t-d1830cbed419c2a9018e5adf8a4630de643632e8d0e47ae14a2a4edd70f65b6d3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7222844 |
PublicationCentury | 2000 |
PublicationDate | 2015-08-25 |
PublicationDateYYYYMMDD | 2015-08-25 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-25 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | 2014 13th Mexican International Conference on Artificial Intelligence |
PublicationTitleAbbrev | MICAI |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib026764317 |
Score | 1.5744717 |
Snippet | The dimensionality reduction by feature selection is one of the fundamental steps in the pre-processing data stage in the intelligent data analysis. Feature... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 69 |
SubjectTerms | Feature Selection Genetic Algorithm Genetic algorithms Intelligent Data Analysis Niobium Search problems Simulated Annealing Sociology Statistics Support vector machines Tabu Search Threshold Accepting |
Title | Non-deterministic Local Search Methods for Feature Selection: An Experimental Study |
URI | https://ieeexplore.ieee.org/document/7222844 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTp34aBHf8sCI08Rx4oQNoVYF0QoJKnWrYvsiIVCKSjLAr-fspB9CDGyJs1jnRO_d5d07Qq58EwQgdMoglIIJpXKmsogzhAKuEYJAO3f-yTQez8TDPJq3yPWmFwYAnPgMPHvp_uWbpa5sqWwgbblCiDZpS5nWvVrrd4fHMrZY6Hq37OwVzDPma0un5j7cemwOrNvAvVV2Cc-OOt-ZrOKAZbRHJust1XqSN68qlae_f7k1_nfP-6S_beGjTxtwOiAtKA5J11LL2pm5R56ny4KZRg3jFumjBTZaK5DpxM2W_qTIaqklitUK8NG7k24VN_S2oMOd6QDUChK_-mQ2Gr7cjVkzYoG9ImSVzOAX7WsFRgSp5hmSgwSizORJJuLQN4AxjUMOifFByAwCkfFMgDHSz-NIxSY8Ip1iWcAxoZh4IfVTfpQoLYADMk-TQx7mElO80MgT0rPRWXzULhqLJjCnfy-fkS4eTmSrtzw6J51yVcEFwn-pLt25_wCtB6yd |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGejER4v4xgMjTlPHjlM2hFq10FRItFK3KrYvEgKlqCQD_HpsJ_0QYmBLnMW6OHrvLu_eIXTj604HmOoSCAQjTMqUyIRTYqCAKgNBoJw7fzwOB1P2OOOzGrpd98IAgBOfgWcv3b98vVCFLZW1hS1XMLaDdrnJKkTZrbU6PTQUoUVD171lp6-YTGO2MnWq7oONy2bb-g0MrbaLeXbY-dZsFQct_X0UrzZVKkrevCKXnvr-5df4310foNamiQ8_r-HpENUgO0INSy5Lb-YmehkvMqIrPYxbxCMLbbjUIOPYTZf-xIbXYksViyWYR-9OvJXd4fsM97bmA2ArSfxqoWm_N3kYkGrIAnk1oJUTbb5pX0nQrNNVNDH0IAKe6DRKWBj4GkxMw4BCpH1gIoEOS2jCQGvhpyGXoQ6OUT1bZHCCsEm9DPmTPo-kYkDBcE-dQhqkwiR5gRanqGmjM_8ofTTmVWDO_l6-RnuDSTyaj4bjp3PUMC-K21ou5Reoni8LuDRkIJdX7gz8APESr-4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+13th+Mexican+International+Conference+on+Artificial+Intelligence&rft.atitle=Non-deterministic+Local+Search+Methods+for+Feature+Selection%3A+An+Experimental+Study&rft.au=Fernandez-Perez%2C+Marina+P.&rft.au=Gonzalez-Navarro%2C+Felix+F.&rft.date=2015-08-25&rft.pub=IEEE&rft.isbn=9781467370103&rft.spage=69&rft.epage=74&rft_id=info:doi/10.1109%2FMICAI.2014.16&rft.externalDocID=7222844 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467370103/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467370103/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467370103/sc.gif&client=summon&freeimage=true |