Annealing linear scalarized based multi-objective multi-armed bandit algorithm

A stochastic multi-objective multi-armed bandit problem is a particular type of multi-objective (MO) optimization problems where the goal is to find and play fairly the optimal arms. To solve the multi-objective optimization problem, we propose annealing linear scalarized algorithm that transforms t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation pp. 1738 - 1745
Main Authors Yahyaa, Saba Q., Drugan, Madalina M., Manderick, Bernard
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2015
Subjects
Online AccessGet full text
ISSN1089-778X
DOI10.1109/CEC.2015.7257097

Cover

Abstract A stochastic multi-objective multi-armed bandit problem is a particular type of multi-objective (MO) optimization problems where the goal is to find and play fairly the optimal arms. To solve the multi-objective optimization problem, we propose annealing linear scalarized algorithm that transforms the MO optimization problem into a single one by using a linear scalarization function, and finds and plays fairly the optimal arms by using a decaying parameter ε t . We compare empirically linear scalarized-UCB 1 algorithm with the annealing linear scalarized algorithm on a test suit of multi-objective multi-armed bandit problems with independent Bernoulli distributions using different approaches to define weight sets. We used the standard approach, the adaptive approach and the genetic approach. We conclude that the performance of the annealing scalarized and the scalarized UCB 1 algorithms depend on the used weight approach.
AbstractList A stochastic multi-objective multi-armed bandit problem is a particular type of multi-objective (MO) optimization problems where the goal is to find and play fairly the optimal arms. To solve the multi-objective optimization problem, we propose annealing linear scalarized algorithm that transforms the MO optimization problem into a single one by using a linear scalarization function, and finds and plays fairly the optimal arms by using a decaying parameter ε t . We compare empirically linear scalarized-UCB 1 algorithm with the annealing linear scalarized algorithm on a test suit of multi-objective multi-armed bandit problems with independent Bernoulli distributions using different approaches to define weight sets. We used the standard approach, the adaptive approach and the genetic approach. We conclude that the performance of the annealing scalarized and the scalarized UCB 1 algorithms depend on the used weight approach.
Author Manderick, Bernard
Yahyaa, Saba Q.
Drugan, Madalina M.
Author_xml – sequence: 1
  givenname: Saba Q.
  surname: Yahyaa
  fullname: Yahyaa, Saba Q.
  email: syahyaa@vub.ac.be
  organization: Dept. of Comput. Sci., Vrije Univ. Brussel, Brussels, Belgium
– sequence: 2
  givenname: Madalina M.
  surname: Drugan
  fullname: Drugan, Madalina M.
  email: mdrugan@vub.ac.be
  organization: Dept. of Comput. Sci., Vrije Univ. Brussel, Brussels, Belgium
– sequence: 3
  givenname: Bernard
  surname: Manderick
  fullname: Manderick, Bernard
  email: bmanderi@vub.ac.be
  organization: Dept. of Comput. Sci., Vrije Univ. Brussel, Brussels, Belgium
BookMark eNotj8tKxEAURFsYwcnoXnCTH0i8_Up3L4cwPmDQjYK74aZzM_aQh3SioF9v0GyqKDgUVQlb9UNPjF1zyDkHd1vuylwA17kR2oAzZyzhyjhnlBNmxdYcrMuMsW8XLBnHEwBXmrs1e9r2PWEb-mM6C2FMR48txvBDdVrhOGv32U4hG6oT-Sl80ZIxdn9EX4cpxfY4xDC9d5fsvMF2pKvFN-z1bvdSPmT75_vHcrvPAhdyyqyxDYC2TlAhLRmNUGGBtZMAfiZ44ZRF4ebRHpTTtinQa60KlL7WHuSG3fz3BiI6fMTQYfw-LN_lL9_-Tx4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2015.7257097
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 1479974927
9781479974924
EndPage 1745
ExternalDocumentID 7257097
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i123t-878f005892e638e75a0ba6ad9300c12316948a29089c04958f6ac5546a3cd5c03
IEDL.DBID RIE
ISSN 1089-778X
IngestDate Wed Aug 27 02:44:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-878f005892e638e75a0ba6ad9300c12316948a29089c04958f6ac5546a3cd5c03
PageCount 8
ParticipantIDs ieee_primary_7257097
PublicationCentury 2000
PublicationDate 20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 20150501
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev CEC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
Score 1.9114959
Snippet A stochastic multi-objective multi-armed bandit problem is a particular type of multi-objective (MO) optimization problems where the goal is to find and play...
SourceID ieee
SourceType Publisher
StartPage 1738
SubjectTerms Annealing
Entropy
Frequency measurement
Genetics
Optimization
Time measurement
Title Annealing linear scalarized based multi-objective multi-armed bandit algorithm
URI https://ieeexplore.ieee.org/document/7257097
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ72ggPGdHjy6S2XZPo6GSIgJxIMk3Mj0sYoKa9blwq-33V3wEQ_etps2aTrpfDOdb2YArlgSqTjiPGBoZdC3CQ2EoiJghkoT8b5zyXxy8njCRtP-_Sye1eB6lwtjrS3IZzb0n0Us36R67Z_Kuty3XJO8DnUuWJmrtYsY-DIpJZleOotRzLYhSSq7g7uB53DFYbX-RyOVAkeGTRhvd1DSR17Dda5CvflVnPG_WzyAzlfGHnnYYdEh1OyqBc1tywZS3eAW7H-rP9iGya3TsugT0om3NjEjH05kznveWEM8vhlSEA6DVL2UirEaY7YsZvh4N8G3pzRb5M_LDkyHd4-DUVA1WAgWDrBypwlFUvQV7Fl3DS2PkSpkaGREqXYzbpjsC-z50KB2nkQsEoba09ow0ibWNDqCxipd2WMgynKDiNTE6ERhlFTC4aB21osvcY_mBNr-sObvZQ2NeXVOp3__PoM9L7CSWHgOjTxb2wsH_rm6LKT-CWHJrZM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtQLChjf7sGjLSvttt2jIRBUIB4g4UZmHygq1NRy4de72xZ8xIO3brNpNjvdeez3zQzAVTD1BPPC0AlQc8fXU-pEgkZOoChXXuibkMwmJ_cHQXfk34_ZuATXm1wYrXVGPtOufcywfBXLpb0qa4S25RoPt2Cb-b7P8mytDWZgC6XkdHpufMZovAYlKW-02i3L4mJu8YUfrVQyS9KpQH-9hpxA8uouU-HK1a_yjP9d5D7Uv3L2yOPGGh1ASS-qUFk3bSDFGa7C3rcKhDUY3Bo9izYlnVh_ExPyYYRm4ueVVsRaOEUyyqETi5dcNRZjTObZDIt4E3x7ipNZ-jyvw6jTHra6TtFiwZkZk5UaXRhNs86CTW0Oog4ZUoEBKu5RKs2Mm4D7ETYtOChNLMGiaYDSEtvQk4pJ6h1CeREv9BEQoUOFiFQxNKJQgovIWEJp_Bdb5B7VMdTsZk3e8yoak2KfTv5-fQk73WG_N-ndDR5OYdcKL6cZnkE5TZb63LgCqbjI_oBPqF-w4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+transactions+on+evolutionary+computation&rft.atitle=Annealing+linear+scalarized+based+multi-objective+multi-armed+bandit+algorithm&rft.au=Yahyaa%2C+Saba+Q.&rft.au=Drugan%2C+Madalina+M.&rft.au=Manderick%2C+Bernard&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1089-778X&rft.spage=1738&rft.epage=1745&rft_id=info:doi/10.1109%2FCEC.2015.7257097&rft.externalDocID=7257097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon