Annealing linear scalarized based multi-objective multi-armed bandit algorithm
A stochastic multi-objective multi-armed bandit problem is a particular type of multi-objective (MO) optimization problems where the goal is to find and play fairly the optimal arms. To solve the multi-objective optimization problem, we propose annealing linear scalarized algorithm that transforms t...
        Saved in:
      
    
          | Published in | IEEE transactions on evolutionary computation pp. 1738 - 1745 | 
|---|---|
| Main Authors | , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        01.05.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1089-778X | 
| DOI | 10.1109/CEC.2015.7257097 | 
Cover
| Abstract | A stochastic multi-objective multi-armed bandit problem is a particular type of multi-objective (MO) optimization problems where the goal is to find and play fairly the optimal arms. To solve the multi-objective optimization problem, we propose annealing linear scalarized algorithm that transforms the MO optimization problem into a single one by using a linear scalarization function, and finds and plays fairly the optimal arms by using a decaying parameter ε t . We compare empirically linear scalarized-UCB 1 algorithm with the annealing linear scalarized algorithm on a test suit of multi-objective multi-armed bandit problems with independent Bernoulli distributions using different approaches to define weight sets. We used the standard approach, the adaptive approach and the genetic approach. We conclude that the performance of the annealing scalarized and the scalarized UCB 1 algorithms depend on the used weight approach. | 
    
|---|---|
| AbstractList | A stochastic multi-objective multi-armed bandit problem is a particular type of multi-objective (MO) optimization problems where the goal is to find and play fairly the optimal arms. To solve the multi-objective optimization problem, we propose annealing linear scalarized algorithm that transforms the MO optimization problem into a single one by using a linear scalarization function, and finds and plays fairly the optimal arms by using a decaying parameter ε t . We compare empirically linear scalarized-UCB 1 algorithm with the annealing linear scalarized algorithm on a test suit of multi-objective multi-armed bandit problems with independent Bernoulli distributions using different approaches to define weight sets. We used the standard approach, the adaptive approach and the genetic approach. We conclude that the performance of the annealing scalarized and the scalarized UCB 1 algorithms depend on the used weight approach. | 
    
| Author | Manderick, Bernard Yahyaa, Saba Q. Drugan, Madalina M.  | 
    
| Author_xml | – sequence: 1 givenname: Saba Q. surname: Yahyaa fullname: Yahyaa, Saba Q. email: syahyaa@vub.ac.be organization: Dept. of Comput. Sci., Vrije Univ. Brussel, Brussels, Belgium – sequence: 2 givenname: Madalina M. surname: Drugan fullname: Drugan, Madalina M. email: mdrugan@vub.ac.be organization: Dept. of Comput. Sci., Vrije Univ. Brussel, Brussels, Belgium – sequence: 3 givenname: Bernard surname: Manderick fullname: Manderick, Bernard email: bmanderi@vub.ac.be organization: Dept. of Comput. Sci., Vrije Univ. Brussel, Brussels, Belgium  | 
    
| BookMark | eNotj8tKxEAURFsYwcnoXnCTH0i8_Up3L4cwPmDQjYK74aZzM_aQh3SioF9v0GyqKDgUVQlb9UNPjF1zyDkHd1vuylwA17kR2oAzZyzhyjhnlBNmxdYcrMuMsW8XLBnHEwBXmrs1e9r2PWEb-mM6C2FMR48txvBDdVrhOGv32U4hG6oT-Sl80ZIxdn9EX4cpxfY4xDC9d5fsvMF2pKvFN-z1bvdSPmT75_vHcrvPAhdyyqyxDYC2TlAhLRmNUGGBtZMAfiZ44ZRF4ebRHpTTtinQa60KlL7WHuSG3fz3BiI6fMTQYfw-LN_lL9_-Tx4 | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/CEC.2015.7257097 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISBN | 1479974927 9781479974924  | 
    
| EndPage | 1745 | 
    
| ExternalDocumentID | 7257097 | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IE 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1  | 
    
| ID | FETCH-LOGICAL-i123t-878f005892e638e75a0ba6ad9300c12316948a29089c04958f6ac5546a3cd5c03 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1089-778X | 
    
| IngestDate | Wed Aug 27 02:44:18 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i123t-878f005892e638e75a0ba6ad9300c12316948a29089c04958f6ac5546a3cd5c03 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | ieee_primary_7257097 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20150501 | 
    
| PublicationDateYYYYMMDD | 2015-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2015 text: 20150501 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | IEEE transactions on evolutionary computation | 
    
| PublicationTitleAbbrev | CEC | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0014519 | 
    
| Score | 1.9114959 | 
    
| Snippet | A stochastic multi-objective multi-armed bandit problem is a particular type of multi-objective (MO) optimization problems where the goal is to find and play... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 1738 | 
    
| SubjectTerms | Annealing Entropy Frequency measurement Genetics Optimization Time measurement  | 
    
| Title | Annealing linear scalarized based multi-objective multi-armed bandit algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/7257097 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ72ggPGdHjy6S2XZPo6GSIgJxIMk3Mj0sYoKa9blwq-33V3wEQ_etps2aTrpfDOdb2YArlgSqTjiPGBoZdC3CQ2EoiJghkoT8b5zyXxy8njCRtP-_Sye1eB6lwtjrS3IZzb0n0Us36R67Z_Kuty3XJO8DnUuWJmrtYsY-DIpJZleOotRzLYhSSq7g7uB53DFYbX-RyOVAkeGTRhvd1DSR17Dda5CvflVnPG_WzyAzlfGHnnYYdEh1OyqBc1tywZS3eAW7H-rP9iGya3TsugT0om3NjEjH05kznveWEM8vhlSEA6DVL2UirEaY7YsZvh4N8G3pzRb5M_LDkyHd4-DUVA1WAgWDrBypwlFUvQV7Fl3DS2PkSpkaGREqXYzbpjsC-z50KB2nkQsEoba09ow0ibWNDqCxipd2WMgynKDiNTE6ERhlFTC4aB21osvcY_mBNr-sObvZQ2NeXVOp3__PoM9L7CSWHgOjTxb2wsH_rm6LKT-CWHJrZM | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtQLChjf7sGjLSvttt2jIRBUIB4g4UZmHygq1NRy4de72xZ8xIO3brNpNjvdeez3zQzAVTD1BPPC0AlQc8fXU-pEgkZOoChXXuibkMwmJ_cHQXfk34_ZuATXm1wYrXVGPtOufcywfBXLpb0qa4S25RoPt2Cb-b7P8mytDWZgC6XkdHpufMZovAYlKW-02i3L4mJu8YUfrVQyS9KpQH-9hpxA8uouU-HK1a_yjP9d5D7Uv3L2yOPGGh1ASS-qUFk3bSDFGa7C3rcKhDUY3Bo9izYlnVh_ExPyYYRm4ueVVsRaOEUyyqETi5dcNRZjTObZDIt4E3x7ipNZ-jyvw6jTHra6TtFiwZkZk5UaXRhNs86CTW0Oog4ZUoEBKu5RKs2Mm4D7ETYtOChNLMGiaYDSEtvQk4pJ6h1CeREv9BEQoUOFiFQxNKJQgovIWEJp_Bdb5B7VMdTsZk3e8yoak2KfTv5-fQk73WG_N-ndDR5OYdcKL6cZnkE5TZb63LgCqbjI_oBPqF-w4A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+transactions+on+evolutionary+computation&rft.atitle=Annealing+linear+scalarized+based+multi-objective+multi-armed+bandit+algorithm&rft.au=Yahyaa%2C+Saba+Q.&rft.au=Drugan%2C+Madalina+M.&rft.au=Manderick%2C+Bernard&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1089-778X&rft.spage=1738&rft.epage=1745&rft_id=info:doi/10.1109%2FCEC.2015.7257097&rft.externalDocID=7257097 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |