A comparison of feature selection approach between greedy, IG-ratio, Chi-square, and mRMR in educational mining
Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The main purpose of this study is to compare feature selection methods for the efficiency of student performance prediction improvement. In this...
Saved in:
| Published in | 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) pp. 420 - 424 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
01.10.2015
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ICITEED.2015.7408983 |
Cover
| Abstract | Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The main purpose of this study is to compare feature selection methods for the efficiency of student performance prediction improvement. In this research, we proposed 4 feature selection methods: greedy algorithm, Information gain ratio, chi-square, and mRMR that combine with 4 classification models. The example data were 6,882 engineering students in Rajamangala University of Technology Thanyaburi, Thailand from year 2004 to 2010. The experiments demonstrate the effectiveness of the feature selection method in classification of student performance prediction. The result shows that greedy forward selection with neural network classification model presents the best efficiency couple with 91.16% accuracy. |
|---|---|
| AbstractList | Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The main purpose of this study is to compare feature selection methods for the efficiency of student performance prediction improvement. In this research, we proposed 4 feature selection methods: greedy algorithm, Information gain ratio, chi-square, and mRMR that combine with 4 classification models. The example data were 6,882 engineering students in Rajamangala University of Technology Thanyaburi, Thailand from year 2004 to 2010. The experiments demonstrate the effectiveness of the feature selection method in classification of student performance prediction. The result shows that greedy forward selection with neural network classification model presents the best efficiency couple with 91.16% accuracy. |
| Author | Rachburee, Nachirat Punlumjeak, Wattana |
| Author_xml | – sequence: 1 givenname: Nachirat surname: Rachburee fullname: Rachburee, Nachirat email: nachirat.r@en.rmutt.ac.th organization: Dept. of Comput. Eng., Rajamangala Univ. of Technol. Thanyaburi, Thanyaburi, Thailand – sequence: 2 givenname: Wattana surname: Punlumjeak fullname: Punlumjeak, Wattana email: wattana.p@en.rmutt.ac.th organization: Dept. of Comput. Eng., Rajamangala Univ. of Technol. Thanyaburi, Thanyaburi, Thailand |
| BookMark | eNotkNFKwzAUhiPohc49gV6cB1hn0iRNejnqnIWJMOb1OE1Pt8Ca1rRD9vZO3NUHPx__xffAbkMXiLFnwedC8PylLMrtcvk6T7nQc6O4za28YdPcWKEyI43NpL5n3QJc1_YY_dAF6BpoCMdTJBjoSG70lxH7PnboDlDR-EMUYB-J6vMMylUS8aLMoDj4ZPg-YaQZYKih3XxswAeg-uT-jIBHaH3wYf_I7ho8DjS9csK-3pbb4j1Zf67KYrFOvEjlmIg802RISstT5ZxQTdqgIVU51fDaYma5toIrYciSRlVVOSfrauJSa7ROTtjT_68nol0ffYvxvLtmkL8qW1fF |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICITEED.2015.7408983 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781467378635 1467378631 |
| EndPage | 424 |
| ExternalDocumentID | 7408983 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i123t-1965e7e338024cc14f2fa7e4bc4f0d8a6805810417e8e5a4bb90e8cde0355a8c3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:36:07 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i123t-1965e7e338024cc14f2fa7e4bc4f0d8a6805810417e8e5a4bb90e8cde0355a8c3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_7408983 |
| PublicationCentury | 2000 |
| PublicationDate | 20151001 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 20151001 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) |
| PublicationTitleAbbrev | ICITEED |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6425666 |
| Snippet | Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 420 |
| SubjectTerms | Artificial neural networks chi-square Classification algorithms Computational modeling Data mining EDM Electrical engineering feature selection greedy Greedy algorithms IGR Information technology mRMR |
| Title | A comparison of feature selection approach between greedy, IG-ratio, Chi-square, and mRMR in educational mining |
| URI | https://ieeexplore.ieee.org/document/7408983 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0AJ09qwPidOXjsltIPuj0aBNEEY4gk3Mh-zEaitCrl4q93d1swGg_emqZpm5lpX6f75j1CriJbtJiFVGkWULsQR0WoGZUm26FVxg1dpicP_fEsvp8n8wbxdrMwiOjIZ-jbTbeWrwq5sb_KumkcsIxFTdJMWb-a1aqn4XpB1r0bmId9eGPpWolfH_rDM8VBxmifTLYXq5giL_6mFL78_KXD-N-7OSCd7-E8eNzBziFpYN4mxTXInaMgFBo0OsVOWDufGxN82KqHQ03NAtNpm1esB3e31JWBB4PnJV2_m6JBD3iuYDWdTGGZA25ZIPwVVs5RokNmo-HTYExrLwW6NNhUUisciCmahtSAspS9WIeapxgLGetAMd5nQcJMa9ZLkWHCYyGyAJlUGJgPEs5kdERaeZHjMYEoyTiGioVRJOJAcqFQSZkhT4U5rZYnpG2DtXir5DIWdZxO_959RvZswip-3DlplR8bvDA4X4pLl-AvO8aqxA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uBxhbJ1rDsaBEEZMQQSbqTt3iJRNpVx8a-37QZG48Hbsizb8t7bvr31e9-H0I1nihZCl8QJp8QsxBHpJpwonW3XKOO6NtPRqN2fsoeZP6sgZzsLAwCWfAYNs2nX8uNMrc2vsmbAKA-5t4N2fcaYX0xrlfNwLRo2Bx39uHfvDGHLb5QH_3BNsaDRO0DR5nIFV-Slsc5lQ33-UmL87_0covr3eB5-2gLPEapAWkPZLVZbT0GcJTgBq9mJV9bpRocfb_TDcUnOwrrX1i9ZBw_uiS0EB3eeF2T1rssGHCzSGC_H0RgvUgwbHoh4xUvrKVFH01530umT0k2BLDQ65cRIB0IAuiXVsKxUiyVuIgJgUrGExly0OfW5bs5aAXDwBZMypMBVDFR_kgiuvGNUTbMUThD2_FCAG3PX8ySjSsgYYqVCEIHUp03UKaqZYM3fCsGMeRmns793X6O9_iQazoeD0eM52jfJK9hyF6iaf6zhUqN-Lq9ssr8AVzWuEQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+7th+International+Conference+on+Information+Technology+and+Electrical+Engineering+%28ICITEE%29&rft.atitle=A+comparison+of+feature+selection+approach+between+greedy%2C+IG-ratio%2C+Chi-square%2C+and+mRMR+in+educational+mining&rft.au=Rachburee%2C+Nachirat&rft.au=Punlumjeak%2C+Wattana&rft.date=2015-10-01&rft.pub=IEEE&rft.spage=420&rft.epage=424&rft_id=info:doi/10.1109%2FICITEED.2015.7408983&rft.externalDocID=7408983 |