A comparison of feature selection approach between greedy, IG-ratio, Chi-square, and mRMR in educational mining

Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The main purpose of this study is to compare feature selection methods for the efficiency of student performance prediction improvement. In this...

Full description

Saved in:
Bibliographic Details
Published in2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) pp. 420 - 424
Main Authors Rachburee, Nachirat, Punlumjeak, Wattana
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2015
Subjects
Online AccessGet full text
DOI10.1109/ICITEED.2015.7408983

Cover

Abstract Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The main purpose of this study is to compare feature selection methods for the efficiency of student performance prediction improvement. In this research, we proposed 4 feature selection methods: greedy algorithm, Information gain ratio, chi-square, and mRMR that combine with 4 classification models. The example data were 6,882 engineering students in Rajamangala University of Technology Thanyaburi, Thailand from year 2004 to 2010. The experiments demonstrate the effectiveness of the feature selection method in classification of student performance prediction. The result shows that greedy forward selection with neural network classification model presents the best efficiency couple with 91.16% accuracy.
AbstractList Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The main purpose of this study is to compare feature selection methods for the efficiency of student performance prediction improvement. In this research, we proposed 4 feature selection methods: greedy algorithm, Information gain ratio, chi-square, and mRMR that combine with 4 classification models. The example data were 6,882 engineering students in Rajamangala University of Technology Thanyaburi, Thailand from year 2004 to 2010. The experiments demonstrate the effectiveness of the feature selection method in classification of student performance prediction. The result shows that greedy forward selection with neural network classification model presents the best efficiency couple with 91.16% accuracy.
Author Rachburee, Nachirat
Punlumjeak, Wattana
Author_xml – sequence: 1
  givenname: Nachirat
  surname: Rachburee
  fullname: Rachburee, Nachirat
  email: nachirat.r@en.rmutt.ac.th
  organization: Dept. of Comput. Eng., Rajamangala Univ. of Technol. Thanyaburi, Thanyaburi, Thailand
– sequence: 2
  givenname: Wattana
  surname: Punlumjeak
  fullname: Punlumjeak, Wattana
  email: wattana.p@en.rmutt.ac.th
  organization: Dept. of Comput. Eng., Rajamangala Univ. of Technol. Thanyaburi, Thanyaburi, Thailand
BookMark eNotkNFKwzAUhiPohc49gV6cB1hn0iRNejnqnIWJMOb1OE1Pt8Ca1rRD9vZO3NUHPx__xffAbkMXiLFnwedC8PylLMrtcvk6T7nQc6O4za28YdPcWKEyI43NpL5n3QJc1_YY_dAF6BpoCMdTJBjoSG70lxH7PnboDlDR-EMUYB-J6vMMylUS8aLMoDj4ZPg-YaQZYKih3XxswAeg-uT-jIBHaH3wYf_I7ho8DjS9csK-3pbb4j1Zf67KYrFOvEjlmIg802RISstT5ZxQTdqgIVU51fDaYma5toIrYciSRlVVOSfrauJSa7ROTtjT_68nol0ffYvxvLtmkL8qW1fF
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICITEED.2015.7408983
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467378635
1467378631
EndPage 424
ExternalDocumentID 7408983
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-1965e7e338024cc14f2fa7e4bc4f0d8a6805810417e8e5a4bb90e8cde0355a8c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:07 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-1965e7e338024cc14f2fa7e4bc4f0d8a6805810417e8e5a4bb90e8cde0355a8c3
PageCount 5
ParticipantIDs ieee_primary_7408983
PublicationCentury 2000
PublicationDate 20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 20151001
  day: 01
PublicationDecade 2010
PublicationTitle 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)
PublicationTitleAbbrev ICITEED
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6425666
Snippet Educational data mining is a widely interesting issue in data mining research field. One of the topics is feature selection method to reduce a feature set. The...
SourceID ieee
SourceType Publisher
StartPage 420
SubjectTerms Artificial neural networks
chi-square
Classification algorithms
Computational modeling
Data mining
EDM
Electrical engineering
feature selection
greedy
Greedy algorithms
IGR
Information technology
mRMR
Title A comparison of feature selection approach between greedy, IG-ratio, Chi-square, and mRMR in educational mining
URI https://ieeexplore.ieee.org/document/7408983
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0AJ09qwPidOXjsltIPuj0aBNEEY4gk3Mh-zEaitCrl4q93d1swGg_emqZpm5lpX6f75j1CriJbtJiFVGkWULsQR0WoGZUm26FVxg1dpicP_fEsvp8n8wbxdrMwiOjIZ-jbTbeWrwq5sb_KumkcsIxFTdJMWb-a1aqn4XpB1r0bmId9eGPpWolfH_rDM8VBxmifTLYXq5giL_6mFL78_KXD-N-7OSCd7-E8eNzBziFpYN4mxTXInaMgFBo0OsVOWDufGxN82KqHQ03NAtNpm1esB3e31JWBB4PnJV2_m6JBD3iuYDWdTGGZA25ZIPwVVs5RokNmo-HTYExrLwW6NNhUUisciCmahtSAspS9WIeapxgLGetAMd5nQcJMa9ZLkWHCYyGyAJlUGJgPEs5kdERaeZHjMYEoyTiGioVRJOJAcqFQSZkhT4U5rZYnpG2DtXir5DIWdZxO_959RvZswip-3DlplR8bvDA4X4pLl-AvO8aqxA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uBxhbJ1rDsaBEEZMQQSbqTt3iJRNpVx8a-37QZG48Hbsizb8t7bvr31e9-H0I1nihZCl8QJp8QsxBHpJpwonW3XKOO6NtPRqN2fsoeZP6sgZzsLAwCWfAYNs2nX8uNMrc2vsmbAKA-5t4N2fcaYX0xrlfNwLRo2Bx39uHfvDGHLb5QH_3BNsaDRO0DR5nIFV-Slsc5lQ33-UmL87_0covr3eB5-2gLPEapAWkPZLVZbT0GcJTgBq9mJV9bpRocfb_TDcUnOwrrX1i9ZBw_uiS0EB3eeF2T1rssGHCzSGC_H0RgvUgwbHoh4xUvrKVFH01530umT0k2BLDQ65cRIB0IAuiXVsKxUiyVuIgJgUrGExly0OfW5bs5aAXDwBZMypMBVDFR_kgiuvGNUTbMUThD2_FCAG3PX8ySjSsgYYqVCEIHUp03UKaqZYM3fCsGMeRmns793X6O9_iQazoeD0eM52jfJK9hyF6iaf6zhUqN-Lq9ssr8AVzWuEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+7th+International+Conference+on+Information+Technology+and+Electrical+Engineering+%28ICITEE%29&rft.atitle=A+comparison+of+feature+selection+approach+between+greedy%2C+IG-ratio%2C+Chi-square%2C+and+mRMR+in+educational+mining&rft.au=Rachburee%2C+Nachirat&rft.au=Punlumjeak%2C+Wattana&rft.date=2015-10-01&rft.pub=IEEE&rft.spage=420&rft.epage=424&rft_id=info:doi/10.1109%2FICITEED.2015.7408983&rft.externalDocID=7408983