A Brain MR Images Segmentation Method Based on SOM Neural Network
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images. In this paper, a novel brain MR images segmentation method is presented based on self-organizing map (SOM) neural network. The method compris...
Saved in:
| Published in | 2007 1st International Conference on Bioinformatics and Biomedical Engineering Vol. 1; pp. 686 - 689 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding Journal Article |
| Language | English |
| Published |
IEEE
2007
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781424411207 1424411203 |
| ISSN | 2151-7614 |
| DOI | 10.1109/ICBBE.2007.179 |
Cover
| Abstract | Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images. In this paper, a novel brain MR images segmentation method is presented based on self-organizing map (SOM) neural network. The method comprises two main steps: feature extraction and pixel classification based on SOM neural network. In traditional techniques, neural network's input is the feature vector extracted from the intensity of the pixel and of its n nearest neighbors, which introduces dependency on the gray levels spatial distribution, and thus the final segmentation results are prone to be effected by noise. To enhance the robustness of the method, we perform statistical transformation to the traditional feature vector as neural network's input. Simulated brain MR images with different noise levels and intensity inhomogeneities are segmented to demonstrate the superiority of the proposed method compared to the traditional technique. |
|---|---|
| AbstractList | Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images. In this paper, a novel brain MR images segmentation method is presented based on self-organizing map (SOM) neural network. The method comprises two main steps: feature extraction and pixel classification based on SOM neural network. In traditional techniques, neural network's input is the feature vector extracted from the intensity of the pixel and of its n nearest neighbors, which introduces dependency on the gray levels spatial distribution, and thus the final segmentation results are prone to be effected by noise. To enhance the robustness of the method, we perform statistical transformation to the traditional feature vector as neural network's input. Simulated brain MR images with different noise levels and intensity inhomogeneities are segmented to demonstrate the superiority of the proposed method compared to the traditional technique. Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images. In this paper, a novel brain MR images segmentation method is presented based on self-organ [abstract truncated by publisher]. |
| Author | Fan, L. Tian, D. |
| Author_xml | – sequence: 1 givenname: D. surname: Tian fullname: Tian, D. organization: Sch. of Inf., Shenyang Univ., Shenyang – sequence: 2 givenname: L. surname: Fan fullname: Fan, L. organization: Sch. of Inf., Shenyang Univ., Shenyang |
| BookMark | eNotj71PwzAUxC1RJErpysLiiS3lPdu14zGJCkRqqURhjpzktQTyUeJUiP-eSGU63emn0901m7RdS4zdIiwQwT6kSRyvFgLALNDYCza3JkQllEIUYCZsKnCJgdGortjc-08AQKuNsjhlUcTj3lUt37zytHEH8nxHh4bawQ1VN8Y0fHQlj52nko9-t93wFzr1rh5l-On6rxt2uXe1p_m_ztj74-oteQ7W26c0idZBhQKHoDChJBWOA0EaQ4ZyKDSQJu1Km-eQW2dKja7YaycVoQxlAdo6S2Ypx5dyxu7Pvce--z6RH7Km8gXVtWupO_lMwBJC1OEI3p3BioiyY181rv_NlDBCayn_ANUVVvA |
| ContentType | Conference Proceeding Journal Article |
| DBID | 6IE 6IL CBEJK RIE RIL 7QO 7TK 8FD FR3 P64 |
| DOI | 10.1109/ICBBE.2007.179 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EndPage | 689 |
| ExternalDocumentID | 4272663 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AARBI AAWTH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IERZE OCL RIE RIL 7QO 7TK 8FD FR3 P64 |
| ID | FETCH-LOGICAL-i121t-c783e481790377e7eb0c60e6e6ad9bb0b9a7d61acf6a34e1383c069a9e7531093 |
| IEDL.DBID | RIE |
| ISBN | 9781424411207 1424411203 |
| ISSN | 2151-7614 |
| IngestDate | Tue Oct 07 09:19:35 EDT 2025 Wed Aug 27 01:52:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i121t-c783e481790377e7eb0c60e6e6ad9bb0b9a7d61acf6a34e1383c069a9e7531093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 20508168 |
| PQPubID | 23462 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_4272663 proquest_miscellaneous_20508168 |
| PublicationCentury | 2000 |
| PublicationDate | 2007-00-00 |
| PublicationDateYYYYMMDD | 2007-01-01 |
| PublicationDate_xml | – year: 2007 text: 2007-00-00 |
| PublicationDecade | 2000 |
| PublicationTitle | 2007 1st International Conference on Bioinformatics and Biomedical Engineering |
| PublicationTitleAbbrev | ICBBE |
| PublicationYear | 2007 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001967491 ssj0001079997 |
| Score | 1.5389521 |
| Snippet | Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images.... |
| SourceID | proquest ieee |
| SourceType | Aggregation Database Publisher |
| StartPage | 686 |
| SubjectTerms | Biological neural networks Clinical diagnosis Feature extraction Humans Image segmentation Magnetic resonance Nearest neighbor searches Noise level Noise robustness Visualization |
| Title | A Brain MR Images Segmentation Method Based on SOM Neural Network |
| URI | https://ieeexplore.ieee.org/document/4272663 https://www.proquest.com/docview/20508168 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6AxMSTH2DEzx48OujW0q5HIBAwmRqRhBtp1xdjFDACB_31tt0miXrwtLXJku5t0_f7eRC6it0mMxMGkWEyYNZmDmIVhwE1oFs0JYZ6kKTklg_G7GbSmpTQ9XcvDAD44jNouFefyzfLdONCZU0WCatPaBmVRcyzXq1tPIUIa-uI7VhywTxhnlNqgfXWWdHXZU0MQgu4p3wsckDHkMjmsNvp9DJ0w9CXeLmV_LqrvQLq76GkWHpWd_LS2Kx1I_38ger433_bR7Vtqx--_1ZiB6gEi0O0kzFUflRRu407jkQCJw94OLd3zwqP4GmeNyzZaU9AjTtWFxpsx6O7BDu8D_VqH77AvIbG_d5jdxDkrAvBcxiF6yAVMQXm9pBQIUCAJiknwIErI7UmWipheKjSGVeUQWhd3JRwqSRYz8eBUx2hymK5gGOEOddGuiahlFGXxtcyFipyhFiSMjpr1VHVCWL6lgFrTHMZ1NFlIeqpPewug6EWsNysphFpeaKQk78_PEW7WejVRUjOUGX9voFzazOs9YU_LF9I9rUE |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iEIKJq4gbD4ykOLFjxyNFoBYIIA6JLbLjV4SAFkE7wK_HdtJWAgamxJYiOc-W3_19APuZ32Ru4yixXEXc2cxRprM4YhZNykpqWQBJyi9F-56fPaQPU3Aw7oVBxFB8hk3_GnL5tl8OfajskCfS6RM2DbMp5zyturUmERUqnbUjJ2MlJA-UeV6tRc5f56POLmdkUDYCfKrHsoZ0jKk67By3WicVvmEcirz8Wn7d1kEFnS5CPlp8VXny3BwOTLP8-oHr-N-_W4LGpNmPXI_V2DJMYW8F5iqOys9VODoiLU8jQfIb0nl1t88HucXH17plyU0HCmrSctrQEje-vcqJR_zQL-4RSswbcH96cnfcjmrehegpTuJBVMqMIfe7SJmUKNHQUlAUKLRVxlCjtLQi1mVXaMYxdk5uSYXSCp3v4-Gp1mCm1-_hOhAhjFW-TajkzCfyjcqkTjwllmKcddMNWPWCKN4qaI2ilsEG7I1EXbjj7nMYuof94UeR0DRQhWz-_eEezLfv8ovionN5vgULVSDWx0u2YWbwPsQdZ0EMzG44ON_9b7hR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+1st+International+Conference+on+Bioinformatics+and+Biomedical+Engineering&rft.atitle=A+Brain+MR+Images+Segmentation+Method+Based+on+SOM+Neural+Network&rft.au=Tian%2C+D.&rft.au=Fan%2C+L.&rft.date=2007-01-01&rft.pub=IEEE&rft.isbn=9781424411207&rft.issn=2151-7614&rft.spage=686&rft.epage=689&rft_id=info:doi/10.1109%2FICBBE.2007.179&rft.externalDocID=4272663 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2151-7614&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2151-7614&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2151-7614&client=summon |