A Brain MR Images Segmentation Method Based on SOM Neural Network

Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images. In this paper, a novel brain MR images segmentation method is presented based on self-organizing map (SOM) neural network. The method compris...

Full description

Saved in:
Bibliographic Details
Published in2007 1st International Conference on Bioinformatics and Biomedical Engineering Vol. 1; pp. 686 - 689
Main Authors Tian, D., Fan, L.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 2007
Subjects
Online AccessGet full text
ISBN9781424411207
1424411203
ISSN2151-7614
DOI10.1109/ICBBE.2007.179

Cover

Abstract Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images. In this paper, a novel brain MR images segmentation method is presented based on self-organizing map (SOM) neural network. The method comprises two main steps: feature extraction and pixel classification based on SOM neural network. In traditional techniques, neural network's input is the feature vector extracted from the intensity of the pixel and of its n nearest neighbors, which introduces dependency on the gray levels spatial distribution, and thus the final segmentation results are prone to be effected by noise. To enhance the robustness of the method, we perform statistical transformation to the traditional feature vector as neural network's input. Simulated brain MR images with different noise levels and intensity inhomogeneities are segmented to demonstrate the superiority of the proposed method compared to the traditional technique.
AbstractList Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images. In this paper, a novel brain MR images segmentation method is presented based on self-organizing map (SOM) neural network. The method comprises two main steps: feature extraction and pixel classification based on SOM neural network. In traditional techniques, neural network's input is the feature vector extracted from the intensity of the pixel and of its n nearest neighbors, which introduces dependency on the gray levels spatial distribution, and thus the final segmentation results are prone to be effected by noise. To enhance the robustness of the method, we perform statistical transformation to the traditional feature vector as neural network's input. Simulated brain MR images with different noise levels and intensity inhomogeneities are segmented to demonstrate the superiority of the proposed method compared to the traditional technique.
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images. In this paper, a novel brain MR images segmentation method is presented based on self-organ [abstract truncated by publisher].
Author Fan, L.
Tian, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Tian
  fullname: Tian, D.
  organization: Sch. of Inf., Shenyang Univ., Shenyang
– sequence: 2
  givenname: L.
  surname: Fan
  fullname: Fan, L.
  organization: Sch. of Inf., Shenyang Univ., Shenyang
BookMark eNotj71PwzAUxC1RJErpysLiiS3lPdu14zGJCkRqqURhjpzktQTyUeJUiP-eSGU63emn0901m7RdS4zdIiwQwT6kSRyvFgLALNDYCza3JkQllEIUYCZsKnCJgdGortjc-08AQKuNsjhlUcTj3lUt37zytHEH8nxHh4bawQ1VN8Y0fHQlj52nko9-t93wFzr1rh5l-On6rxt2uXe1p_m_ztj74-oteQ7W26c0idZBhQKHoDChJBWOA0EaQ4ZyKDSQJu1Km-eQW2dKja7YaycVoQxlAdo6S2Ypx5dyxu7Pvce--z6RH7Km8gXVtWupO_lMwBJC1OEI3p3BioiyY181rv_NlDBCayn_ANUVVvA
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7QO
7TK
8FD
FR3
P64
DOI 10.1109/ICBBE.2007.179
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EndPage 689
ExternalDocumentID 4272663
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
7QO
7TK
8FD
FR3
P64
ID FETCH-LOGICAL-i121t-c783e481790377e7eb0c60e6e6ad9bb0b9a7d61acf6a34e1383c069a9e7531093
IEDL.DBID RIE
ISBN 9781424411207
1424411203
ISSN 2151-7614
IngestDate Tue Oct 07 09:19:35 EDT 2025
Wed Aug 27 01:52:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i121t-c783e481790377e7eb0c60e6e6ad9bb0b9a7d61acf6a34e1383c069a9e7531093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 20508168
PQPubID 23462
PageCount 4
ParticipantIDs ieee_primary_4272663
proquest_miscellaneous_20508168
PublicationCentury 2000
PublicationDate 2007-00-00
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007-00-00
PublicationDecade 2000
PublicationTitle 2007 1st International Conference on Bioinformatics and Biomedical Engineering
PublicationTitleAbbrev ICBBE
PublicationYear 2007
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967491
ssj0001079997
Score 1.5389521
Snippet Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of magnetic resonance (MR) images....
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 686
SubjectTerms Biological neural networks
Clinical diagnosis
Feature extraction
Humans
Image segmentation
Magnetic resonance
Nearest neighbor searches
Noise level
Noise robustness
Visualization
Title A Brain MR Images Segmentation Method Based on SOM Neural Network
URI https://ieeexplore.ieee.org/document/4272663
https://www.proquest.com/docview/20508168
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG6AxMSTH2DEzx48OujW0q5HIBAwmRqRhBtp1xdjFDACB_31tt0miXrwtLXJku5t0_f7eRC6it0mMxMGkWEyYNZmDmIVhwE1oFs0JYZ6kKTklg_G7GbSmpTQ9XcvDAD44jNouFefyzfLdONCZU0WCatPaBmVRcyzXq1tPIUIa-uI7VhywTxhnlNqgfXWWdHXZU0MQgu4p3wsckDHkMjmsNvp9DJ0w9CXeLmV_LqrvQLq76GkWHpWd_LS2Kx1I_38ger433_bR7Vtqx--_1ZiB6gEi0O0kzFUflRRu407jkQCJw94OLd3zwqP4GmeNyzZaU9AjTtWFxpsx6O7BDu8D_VqH77AvIbG_d5jdxDkrAvBcxiF6yAVMQXm9pBQIUCAJiknwIErI7UmWipheKjSGVeUQWhd3JRwqSRYz8eBUx2hymK5gGOEOddGuiahlFGXxtcyFipyhFiSMjpr1VHVCWL6lgFrTHMZ1NFlIeqpPewug6EWsNysphFpeaKQk78_PEW7WejVRUjOUGX9voFzazOs9YU_LF9I9rUE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iEIKJq4gbD4ykOLFjxyNFoBYIIA6JLbLjV4SAFkE7wK_HdtJWAgamxJYiOc-W3_19APuZ32Ru4yixXEXc2cxRprM4YhZNykpqWQBJyi9F-56fPaQPU3Aw7oVBxFB8hk3_GnL5tl8OfajskCfS6RM2DbMp5zyturUmERUqnbUjJ2MlJA-UeV6tRc5f56POLmdkUDYCfKrHsoZ0jKk67By3WicVvmEcirz8Wn7d1kEFnS5CPlp8VXny3BwOTLP8-oHr-N-_W4LGpNmPXI_V2DJMYW8F5iqOys9VODoiLU8jQfIb0nl1t88HucXH17plyU0HCmrSctrQEje-vcqJR_zQL-4RSswbcH96cnfcjmrehegpTuJBVMqMIfe7SJmUKNHQUlAUKLRVxlCjtLQi1mVXaMYxdk5uSYXSCp3v4-Gp1mCm1-_hOhAhjFW-TajkzCfyjcqkTjwllmKcddMNWPWCKN4qaI2ilsEG7I1EXbjj7nMYuof94UeR0DRQhWz-_eEezLfv8ovionN5vgULVSDWx0u2YWbwPsQdZ0EMzG44ON_9b7hR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2007+1st+International+Conference+on+Bioinformatics+and+Biomedical+Engineering&rft.atitle=A+Brain+MR+Images+Segmentation+Method+Based+on+SOM+Neural+Network&rft.au=Tian%2C+D.&rft.au=Fan%2C+L.&rft.date=2007-01-01&rft.pub=IEEE&rft.isbn=9781424411207&rft.issn=2151-7614&rft.spage=686&rft.epage=689&rft_id=info:doi/10.1109%2FICBBE.2007.179&rft.externalDocID=4272663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2151-7614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2151-7614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2151-7614&client=summon