Identification of Switched Gated Recurrent Neural Networks Using the EM Algorithm

In the domain of nonlinear hybrid dynamic system modeling, the effectiveness of switched autoregressive exogenous (SARX) systems may face certain restrictions. To address this issue, this paper presents an enhanced switched system framework. In this framework, all SARX subsystems are replaced with g...

Full description

Saved in:
Bibliographic Details
Published in2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) pp. 1 - 6
Main Authors Bai, Wentao, Gu, Suhang, Yan, Chao, Zhang, Haoyu, Jiang, Chunli, Guo, Fan
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.09.2023
Subjects
Online AccessGet full text
DOI10.1109/DOCS60977.2023.10294958

Cover

Abstract In the domain of nonlinear hybrid dynamic system modeling, the effectiveness of switched autoregressive exogenous (SARX) systems may face certain restrictions. To address this issue, this paper presents an enhanced switched system framework. In this framework, all SARX subsystems are replaced with gated recurrent neural networks, aiming to overcome these limitations. Importantly, the proposed switched system does not rely on any prior assumptions about the knowledge of operating modes. Finally, a new identification method is proposed based on the expectation-maximization (EM) algorithm, and its effectiveness is validated through a simulation example.
AbstractList In the domain of nonlinear hybrid dynamic system modeling, the effectiveness of switched autoregressive exogenous (SARX) systems may face certain restrictions. To address this issue, this paper presents an enhanced switched system framework. In this framework, all SARX subsystems are replaced with gated recurrent neural networks, aiming to overcome these limitations. Importantly, the proposed switched system does not rely on any prior assumptions about the knowledge of operating modes. Finally, a new identification method is proposed based on the expectation-maximization (EM) algorithm, and its effectiveness is validated through a simulation example.
Author Zhang, Haoyu
Jiang, Chunli
Guo, Fan
Gu, Suhang
Bai, Wentao
Yan, Chao
Author_xml – sequence: 1
  givenname: Wentao
  surname: Bai
  fullname: Bai, Wentao
  email: baiwentao@cslg.edu.cn
  organization: School of Computer Science and Engineering, Changshu Institute of Technology,Changshu,China
– sequence: 2
  givenname: Suhang
  surname: Gu
  fullname: Gu, Suhang
  email: gusuhang09@163.com
  organization: School of Electrical Engineering and Automation, Changshu Institute of Technology,Changshu,China
– sequence: 3
  givenname: Chao
  surname: Yan
  fullname: Yan, Chao
  email: yanchao@cslg.edu.cn
  organization: School of Electrical Engineering and Automation, Changshu Institute of Technology,Changshu,China
– sequence: 4
  givenname: Haoyu
  surname: Zhang
  fullname: Zhang, Haoyu
  email: zhy920816@sina.cn
  organization: School of Information Science and Technology, Hangzhou Normal University,Hangzhou,China
– sequence: 5
  givenname: Chunli
  surname: Jiang
  fullname: Jiang, Chunli
  email: jiangcl@cqupt.edu.cn
  organization: School of Software Engineering, Chongqing University of Posts and Telecommunications,Chongqing,China
– sequence: 6
  givenname: Fan
  surname: Guo
  fullname: Guo, Fan
  email: fg636543@126.com
  organization: School of Automation, Nanjing Institute of Technology,Nanjing,China
BookMark eNo1j9FKwzAUhiPohc69gWBeoDWnadqcy1HnHEyHbl6PND1Zg1sracbw7S2oN9938_HDf8Muu74jxu5BpAACHx7X1aYQWJZpJjKZgsgwR6Uv2BRL1FIJiVJlcM3elg110TtvTfR9x3vHN2cfbUsNX5g48p3sKYQx4q90CuYwKp778Dnwj8F3ex5b4vMXPjvs--Bje7xlV84cBpr-ecK2T_Nt9Zys1otlNVslHgBj4mpAMlQ4alDaOlc6V412VFh0xmJTK3AGpZPaSHCiRodagFEKIcsbISfs7nfWE9HuK_ijCd-7_6PyBzZdTqE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DOCS60977.2023.10294958
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350393521
EndPage 6
ExternalDocumentID 10294958
Genre orig-research
GrantInformation_xml – fundername: Nanjing Institute of Technology
  grantid: YKJ202211
  funderid: 10.13039/501100008114
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20210940
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 62106025
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-fb19eae6fed93cb45845d8fe6c9fac9db51fa93f38a31f0b9f9801a559124d03
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:11 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-fb19eae6fed93cb45845d8fe6c9fac9db51fa93f38a31f0b9f9801a559124d03
PageCount 6
ParticipantIDs ieee_primary_10294958
PublicationCentury 2000
PublicationDate 2023-Sept.-22
PublicationDateYYYYMMDD 2023-09-22
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-22
  day: 22
PublicationDecade 2020
PublicationTitle 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS)
PublicationTitleAbbrev DOCS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8484174
Snippet In the domain of nonlinear hybrid dynamic system modeling, the effectiveness of switched autoregressive exogenous (SARX) systems may face certain restrictions....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms EM algorithm
gated recurrent neural networks
Heuristic algorithms
hybrid dynamic systems
Logic gates
Probabilistic logic
Recurrent neural networks
SARX
Switched systems
Switches
Switching systems
Title Identification of Switched Gated Recurrent Neural Networks Using the EM Algorithm
URI https://ieeexplore.ieee.org/document/10294958
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uTz6pOPGbPPjamvQjNo8yN4aw-bEJextJc6PD2crsEPz15qadoiD41BIKLfcSzu3JOfcScmaFMNiVJTAyTYIkZibQKBpnWrn62WFQbJEaGI7E4CG5nqbTxqzuvTAA4MVnEOKtP8s3Zb5Cqszt8Ei6gj5rkdZFJmqzVqPZ4kyeX910x4K5gibEmeDh-ukfc1M8bPS3yGj9wlot8hyuKh3mH796Mf77i7ZJ59uhR2-_sGeHbECxS-5q161taDhaWjp-n2NaDEWWzNB7ZNexHxPFphxq4S5eBf5GvXSAumqQ9ob0cvFYLufV00uHTPq9SXcQNCMTgjnnsgqs5hIUCAtGxrnGQ9DUZBZELq3KpdEpt0q6-Gcq5pZpaaWDKOV-KxzOGxbvkXZRFrBPaGYjrVjOWA48UYYpMAy4W2QWrNu6B6SD4Zi91k0xZutIHP6xfkQ2MSsotYiiY9Kulis4cXhe6VOfx0_flqI8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1aD3pSseK3OXjdNdkvNkepLVXb-tEKvZVkM7HF2pW6RfDXm8luFQXB04awsEuG8CaT994QcmaSRKMri6dFHHlRyLSnkDTOlLT5s8Wg0GBpoNtL2o_R9TAeVmJ1p4UBAEc-Ax-H7i5f59kCS2V2hwfCJvTpKlmLoyiKS7lWxdriTJxf3jb6CbMpjY9dwf3l-z86pzjgaG2S3vKTJV_k2V8Uys8-frkx_vuftkj9W6NH777QZ5uswGyH3Je6W1MV4mhuaP99goHRFOtkmj5gfR0dmSjacsipfTge-Bt15AFq80Ha7NKL6VM-nxTjlzoZtJqDRturmiZ4E85F4RnFBUhIDGgRZgqvQWOdGkgyYWQmtIq5kcJGIJUhN0wJIyxISXuwsEivWbhLarN8BnuEpiZQkmWMZcAjqZkEzYDbSWbA2M27T-q4HKPX0hZjtFyJgz_mT8l6e9DtjDpXvZtDsoERQuJFEByRWjFfwLFF90KduJh-AotypYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Identification+of+Switched+Gated+Recurrent+Neural+Networks+Using+the+EM+Algorithm&rft.au=Bai%2C+Wentao&rft.au=Gu%2C+Suhang&rft.au=Yan%2C+Chao&rft.au=Zhang%2C+Haoyu&rft.date=2023-09-22&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDOCS60977.2023.10294958&rft.externalDocID=10294958