Identification of Switched Gated Recurrent Neural Networks Using the EM Algorithm
In the domain of nonlinear hybrid dynamic system modeling, the effectiveness of switched autoregressive exogenous (SARX) systems may face certain restrictions. To address this issue, this paper presents an enhanced switched system framework. In this framework, all SARX subsystems are replaced with g...
Saved in:
| Published in | 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) pp. 1 - 6 |
|---|---|
| Main Authors | , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
22.09.2023
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/DOCS60977.2023.10294958 |
Cover
| Abstract | In the domain of nonlinear hybrid dynamic system modeling, the effectiveness of switched autoregressive exogenous (SARX) systems may face certain restrictions. To address this issue, this paper presents an enhanced switched system framework. In this framework, all SARX subsystems are replaced with gated recurrent neural networks, aiming to overcome these limitations. Importantly, the proposed switched system does not rely on any prior assumptions about the knowledge of operating modes. Finally, a new identification method is proposed based on the expectation-maximization (EM) algorithm, and its effectiveness is validated through a simulation example. |
|---|---|
| AbstractList | In the domain of nonlinear hybrid dynamic system modeling, the effectiveness of switched autoregressive exogenous (SARX) systems may face certain restrictions. To address this issue, this paper presents an enhanced switched system framework. In this framework, all SARX subsystems are replaced with gated recurrent neural networks, aiming to overcome these limitations. Importantly, the proposed switched system does not rely on any prior assumptions about the knowledge of operating modes. Finally, a new identification method is proposed based on the expectation-maximization (EM) algorithm, and its effectiveness is validated through a simulation example. |
| Author | Zhang, Haoyu Jiang, Chunli Guo, Fan Gu, Suhang Bai, Wentao Yan, Chao |
| Author_xml | – sequence: 1 givenname: Wentao surname: Bai fullname: Bai, Wentao email: baiwentao@cslg.edu.cn organization: School of Computer Science and Engineering, Changshu Institute of Technology,Changshu,China – sequence: 2 givenname: Suhang surname: Gu fullname: Gu, Suhang email: gusuhang09@163.com organization: School of Electrical Engineering and Automation, Changshu Institute of Technology,Changshu,China – sequence: 3 givenname: Chao surname: Yan fullname: Yan, Chao email: yanchao@cslg.edu.cn organization: School of Electrical Engineering and Automation, Changshu Institute of Technology,Changshu,China – sequence: 4 givenname: Haoyu surname: Zhang fullname: Zhang, Haoyu email: zhy920816@sina.cn organization: School of Information Science and Technology, Hangzhou Normal University,Hangzhou,China – sequence: 5 givenname: Chunli surname: Jiang fullname: Jiang, Chunli email: jiangcl@cqupt.edu.cn organization: School of Software Engineering, Chongqing University of Posts and Telecommunications,Chongqing,China – sequence: 6 givenname: Fan surname: Guo fullname: Guo, Fan email: fg636543@126.com organization: School of Automation, Nanjing Institute of Technology,Nanjing,China |
| BookMark | eNo1j9FKwzAUhiPohc69gWBeoDWnadqcy1HnHEyHbl6PND1Zg1sracbw7S2oN9938_HDf8Muu74jxu5BpAACHx7X1aYQWJZpJjKZgsgwR6Uv2BRL1FIJiVJlcM3elg110TtvTfR9x3vHN2cfbUsNX5g48p3sKYQx4q90CuYwKp778Dnwj8F3ex5b4vMXPjvs--Bje7xlV84cBpr-ecK2T_Nt9Zys1otlNVslHgBj4mpAMlQ4alDaOlc6V412VFh0xmJTK3AGpZPaSHCiRodagFEKIcsbISfs7nfWE9HuK_ijCd-7_6PyBzZdTqE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/DOCS60977.2023.10294958 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350393521 |
| EndPage | 6 |
| ExternalDocumentID | 10294958 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Nanjing Institute of Technology grantid: YKJ202211 funderid: 10.13039/501100008114 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20210940 funderid: 10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 62106025 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-fb19eae6fed93cb45845d8fe6c9fac9db51fa93f38a31f0b9f9801a559124d03 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jan 10 09:28:11 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-fb19eae6fed93cb45845d8fe6c9fac9db51fa93f38a31f0b9f9801a559124d03 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10294958 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Sept.-22 |
| PublicationDateYYYYMMDD | 2023-09-22 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS) |
| PublicationTitleAbbrev | DOCS |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8484174 |
| Snippet | In the domain of nonlinear hybrid dynamic system modeling, the effectiveness of switched autoregressive exogenous (SARX) systems may face certain restrictions.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | EM algorithm gated recurrent neural networks Heuristic algorithms hybrid dynamic systems Logic gates Probabilistic logic Recurrent neural networks SARX Switched systems Switches Switching systems |
| Title | Identification of Switched Gated Recurrent Neural Networks Using the EM Algorithm |
| URI | https://ieeexplore.ieee.org/document/10294958 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uTz6pOPGbPPjamvQjNo8yN4aw-bEJextJc6PD2crsEPz15qadoiD41BIKLfcSzu3JOfcScmaFMNiVJTAyTYIkZibQKBpnWrn62WFQbJEaGI7E4CG5nqbTxqzuvTAA4MVnEOKtP8s3Zb5Cqszt8Ei6gj5rkdZFJmqzVqPZ4kyeX910x4K5gibEmeDh-ukfc1M8bPS3yGj9wlot8hyuKh3mH796Mf77i7ZJ59uhR2-_sGeHbECxS-5q161taDhaWjp-n2NaDEWWzNB7ZNexHxPFphxq4S5eBf5GvXSAumqQ9ob0cvFYLufV00uHTPq9SXcQNCMTgjnnsgqs5hIUCAtGxrnGQ9DUZBZELq3KpdEpt0q6-Gcq5pZpaaWDKOV-KxzOGxbvkXZRFrBPaGYjrVjOWA48UYYpMAy4W2QWrNu6B6SD4Zi91k0xZutIHP6xfkQ2MSsotYiiY9Kulis4cXhe6VOfx0_flqI8 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEA1aD3pSseK3OXjdNdkvNkepLVXb-tEKvZVkM7HF2pW6RfDXm8luFQXB04awsEuG8CaT994QcmaSRKMri6dFHHlRyLSnkDTOlLT5s8Wg0GBpoNtL2o_R9TAeVmJ1p4UBAEc-Ax-H7i5f59kCS2V2hwfCJvTpKlmLoyiKS7lWxdriTJxf3jb6CbMpjY9dwf3l-z86pzjgaG2S3vKTJV_k2V8Uys8-frkx_vuftkj9W6NH777QZ5uswGyH3Je6W1MV4mhuaP99goHRFOtkmj5gfR0dmSjacsipfTge-Bt15AFq80Ha7NKL6VM-nxTjlzoZtJqDRturmiZ4E85F4RnFBUhIDGgRZgqvQWOdGkgyYWQmtIq5kcJGIJUhN0wJIyxISXuwsEivWbhLarN8BnuEpiZQkmWMZcAjqZkEzYDbSWbA2M27T-q4HKPX0hZjtFyJgz_mT8l6e9DtjDpXvZtDsoERQuJFEByRWjFfwLFF90KduJh-AotypYk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Identification+of+Switched+Gated+Recurrent+Neural+Networks+Using+the+EM+Algorithm&rft.au=Bai%2C+Wentao&rft.au=Gu%2C+Suhang&rft.au=Yan%2C+Chao&rft.au=Zhang%2C+Haoyu&rft.date=2023-09-22&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDOCS60977.2023.10294958&rft.externalDocID=10294958 |