A Novel Parameter Optimization Metaheuristic: Human Habitation Behavior Based Optimization
Parameters have great impact on the performance of an optimization algorithm. This paper concerns parameter tuning for metaheuristics which are stochastic optimization algorithms. A novel, fast, and very simple population-based metaheuristic namely Human Habitation Behavior-Based optimization (HHBO)...
        Saved in:
      
    
          | Published in | 2022 5th International Conference on Contemporary Computing and Informatics (IC3I) pp. 921 - 924 | 
|---|---|
| Main Authors | , , , | 
| Format | Conference Proceeding | 
| Language | English | 
| Published | 
            IEEE
    
        14.12.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| DOI | 10.1109/IC3I56241.2022.10072699 | 
Cover
| Abstract | Parameters have great impact on the performance of an optimization algorithm. This paper concerns parameter tuning for metaheuristics which are stochastic optimization algorithms. A novel, fast, and very simple population-based metaheuristic namely Human Habitation Behavior-Based optimization (HHBO) is proposed in order to tune parameters of the metaheuristics used for the weight and bias optimization problem in feed-forward neural networks. The proposed algorithm is compared with other state-of-art algorithms, and results and analysis are presented. The results show the merits of HHBO for parameter tuning in comparison of other state-of-art algorithms. | 
    
|---|---|
| AbstractList | Parameters have great impact on the performance of an optimization algorithm. This paper concerns parameter tuning for metaheuristics which are stochastic optimization algorithms. A novel, fast, and very simple population-based metaheuristic namely Human Habitation Behavior-Based optimization (HHBO) is proposed in order to tune parameters of the metaheuristics used for the weight and bias optimization problem in feed-forward neural networks. The proposed algorithm is compared with other state-of-art algorithms, and results and analysis are presented. The results show the merits of HHBO for parameter tuning in comparison of other state-of-art algorithms. | 
    
| Author | Malik, Varun Singh, S Vikram Jain, Divya Arya, Mithlesh  | 
    
| Author_xml | – sequence: 1 givenname: Divya surname: Jain fullname: Jain, Divya email: divyabairathijain@yahoo.co.in organization: Poornima College of Engineering,Computer Engineering Department,Jaipur,India – sequence: 2 givenname: Mithlesh surname: Arya fullname: Arya, Mithlesh email: mithlesh.arya@poornima.org organization: Poornima College of Engineering,Computer Engineering Department,Jaipur,India – sequence: 3 givenname: Varun surname: Malik fullname: Malik, Varun email: varun.malik@chitkara.edu.in organization: Chitkara University,Chitkara University Institute of Engineering and Technology,Punjab,India – sequence: 4 givenname: S Vikram surname: Singh fullname: Singh, S Vikram email: svikram@gn.amity.edu organization: Amity University,Noida,India  | 
    
| BookMark | eNpVj8FOwzAQRI0EByj9AyT8AwlrO7Gz3NoImkqFcoALl2qTLKqlJqkctxJ8PUiFA6c5jN7ozZU474eehbhVkCoFeLcszTK3OlOpBq1TBeC0RTwTU3RYmBwMFtq6S_E-k8_DkXfyhQJ1HDnI9T76zn9R9EMvnzjSlg_Bj9E397I6dNTLimofT_2ct3T0Q5BzGrn9x16Liw_ajTz9zYl4e3x4LatktV4sy9kq8UphTBiBDaiG2BCgYcwLlyntCv4xrrUxVLcus1YTGEAowFJeE0KWQ8Mts5mIm9OuZ-bNPviOwufm77L5Bly3URM | 
    
| ContentType | Conference Proceeding | 
    
| DBID | 6IE 6IL CBEJK RIE RIL  | 
    
| DOI | 10.1109/IC3I56241.2022.10072699 | 
    
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISBN | 9798350398267 | 
    
| EndPage | 924 | 
    
| ExternalDocumentID | 10072699 | 
    
| Genre | orig-research | 
    
| GroupedDBID | 6IE 6IL CBEJK RIE RIL  | 
    
| ID | FETCH-LOGICAL-i119t-e90e301cae3a093e958741278e269b233abd74662a03090806a5ba90450cedee3 | 
    
| IEDL.DBID | RIE | 
    
| IngestDate | Wed Aug 27 02:52:59 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-i119t-e90e301cae3a093e958741278e269b233abd74662a03090806a5ba90450cedee3 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | ieee_primary_10072699 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-Dec.-14 | 
    
| PublicationDateYYYYMMDD | 2022-12-14 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-14 day: 14  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 2022 5th International Conference on Contemporary Computing and Informatics (IC3I) | 
    
| PublicationTitleAbbrev | IC3I | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| Score | 2.044978 | 
    
| Snippet | Parameters have great impact on the performance of an optimization algorithm. This paper concerns parameter tuning for metaheuristics which are stochastic... | 
    
| SourceID | ieee | 
    
| SourceType | Publisher | 
    
| StartPage | 921 | 
    
| SubjectTerms | Feed-forward neural networks Metaheuristics Parameter tuning Weight and bias optimization  | 
    
| Title | A Novel Parameter Optimization Metaheuristic: Human Habitation Behavior Based Optimization | 
    
| URI | https://ieeexplore.ieee.org/document/10072699 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7bNUmbNd50ODZhcwcHw8vIj1cUdZPRevCv9yXtFAXBWyktTd8j-b68974XQi4KFeSXNnKpwQ1Kqk2kIAOc8cLZQvOcWR_vGE_kcJbezrN5I1YPWhgACMVnEPvLkMt3K1v5UFnXZ_S5VKpFWr1c1mKtpmaLJao76osRwnnqt32cx5unf5ybEmBjsEMmmw_W1SLPcVWa2H786sX47xHtks63Qo9Ov7Bnj2zBcp88XNHJ6h1e6FT7kiu0GL3DFeG1kVrSMZT6Eaq6N_MlDfF7OtSmadNNm16Ja3qN0OZ-vNshs8HNfX8YNWcnRE-MqTIClQDOXatB6EQJUFmO3IH3csDhGi6ENq6XSsm1z7EgbZQ6M1ohwUssOABxQNrL1RIOCc0csiRXpAL_CZ2Ja4ArCmZY4qRFOiCPSMcbZvFWt8dYbGxy_Mf9E7Lt_eNrQlh6StrluoIzRPbSnAePfgLRhaTm | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgDDABoohvPLAmTWLHrdmgAqXQhg6tVLFU_rgIBLSoShj49ZyTFFQkJLYoShTnTvZ7vrt3JuQik6X80niWa9ygcKU9CTHgjGfWZCrqhMbFOwapSMb8bhJParF6qYUBgLL4DHx3Weby7dwULlTWchn9SEi5TjZiznlcybXqqq0wkK1el_UQ0Lnb-EWRv3x-5eSUEjhut0m6_GRVL_LiF7n2zeevboz_HtMOaf5o9OjwG312yRrM9sjjFU3nH_BKh8oVXaHN6AOuCW-12JIOIFdPUFTdmS9pGcGnidJ1o25ad0tc0GsEN7vybpOMb29G3cSrT0_wnsNQ5h7IAHD2GgVMBZKBjDvIHqJ2B3C4OmJMadvmQkTKZVmQOAoVayWR4gUGLADbJ43ZfAYHhMYWeZLNOMN_QnfiKmCzLNRhYIVBQiAOSdMZZvpeNciYLm1y9Mf9c7KZjAb9ab-X3h-TLecrVyES8hPSyBcFnCLO5_qs9O4Xo2WoMw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+5th+International+Conference+on+Contemporary+Computing+and+Informatics+%28IC3I%29&rft.atitle=A+Novel+Parameter+Optimization+Metaheuristic%3A+Human+Habitation+Behavior+Based+Optimization&rft.au=Jain%2C+Divya&rft.au=Arya%2C+Mithlesh&rft.au=Malik%2C+Varun&rft.au=Singh%2C+S+Vikram&rft.date=2022-12-14&rft.pub=IEEE&rft.spage=921&rft.epage=924&rft_id=info:doi/10.1109%2FIC3I56241.2022.10072699&rft.externalDocID=10072699 |