Using Machine Learning to Identify a Camera By Photo Image with On Board Communications
This article explores the use of classical machine learning and Automnl methods to solve the problem of camera identification from photo images in the absence of metadata and limited computational and resource capabilities in on board communications. The experiments were conducted on the well-known...
Saved in:
| Published in | Systems of Signals Generating and Processing in the Field of on Board Communications (Online) pp. 1 - 5 |
|---|---|
| Main Authors | , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
12.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2768-0118 |
| DOI | 10.1109/IEEECONF60226.2024.10496726 |
Cover
| Abstract | This article explores the use of classical machine learning and Automnl methods to solve the problem of camera identification from photo images in the absence of metadata and limited computational and resource capabilities in on board communications. The experiments were conducted on the well-known Forchheim Image Database dataset using the Python programming language and libraries such as scikit-learn, auto-sklearn, skimage and pandas. The paper discusses the use of a local binary pattern (LBP) descriptor in combination with various filtering methods. A comparison of the classification results for each algorithm using different confidence and performance evaluation metrics was carried out. The experimental results showed that the Auto-sklearn algorithm achieved the best performance indicators when using the bilateral filtering method. |
|---|---|
| AbstractList | This article explores the use of classical machine learning and Automnl methods to solve the problem of camera identification from photo images in the absence of metadata and limited computational and resource capabilities in on board communications. The experiments were conducted on the well-known Forchheim Image Database dataset using the Python programming language and libraries such as scikit-learn, auto-sklearn, skimage and pandas. The paper discusses the use of a local binary pattern (LBP) descriptor in combination with various filtering methods. A comparison of the classification results for each algorithm using different confidence and performance evaluation metrics was carried out. The experimental results showed that the Auto-sklearn algorithm achieved the best performance indicators when using the bilateral filtering method. |
| Author | Sineva, I. S. Tkachev, V. D. |
| Author_xml | – sequence: 1 givenname: I. S. surname: Sineva fullname: Sineva, I. S. email: iss@mtuci.ru organization: Moscow Technical University of Communications and Informatics,Moscow,Russia – sequence: 2 givenname: V. D. surname: Tkachev fullname: Tkachev, V. D. email: nindza07@mail.ru organization: Moscow Technical University of Communications and Informatics,Moscow,Russia |
| BookMark | eNo1kM1Kw0AURkdRsNa-gYsB14l3_meWNqQaqNaFxWWZZG7bETORJFL69lLU1QfnwFl81-QidQkJuWOQMwbuvirLsli9LDRwrnMOXOYMpNOG6zMyc8ZZoUBYoZk8JxNutM2AMXtFZsPwAQCCgwQmJuR9PcS0o8--2ceEdIm-TycwdrQKmMa4PVJPC99i7-n8SF_33Um1fof0EMc9XSU673wfaNG17XeKjR9jl4Ybcrn1nwPO_nZK1ovyrXjKlqvHqnhYZpExN2bIQTlExbSGWtSIIBUKAcpaCAaa4DQ3MnCwSgblDG65h9qiBS6UNEFMye1vNyLi5quPre-Pm_8vxA-qOFSW |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IEEECONF60226.2024.10496726 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350383614 |
| EISSN | 2768-0118 |
| EndPage | 5 |
| ExternalDocumentID | 10496726 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i119t-e2059ee51660b3bee045e3305880d70cd96274d20854d597ef2a0b8e8023547d3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:09:59 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-e2059ee51660b3bee045e3305880d70cd96274d20854d597ef2a0b8e8023547d3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10496726 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-March-12 |
| PublicationDateYYYYMMDD | 2024-03-12 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-March-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | Systems of Signals Generating and Processing in the Field of on Board Communications (Online) |
| PublicationTitleAbbrev | IEEECONF |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003204013 |
| Score | 1.8661628 |
| Snippet | This article explores the use of classical machine learning and Automnl methods to solve the problem of camera identification from photo images in the absence... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Analytical models AutoML camera identification Cameras Filtering local binary patterns Machine learning Machine learning algorithms Metadata multi-class classification Performance evaluation photo images |
| Title | Using Machine Learning to Identify a Camera By Photo Image with On Board Communications |
| URI | https://ieeexplore.ieee.org/document/10496726 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfBPTa2uZX1-uGYwhuOzjcbTTNi4rYDu0O8683L-0mEwRvTQshJH15eS_f9z1CbgTEKGyFzF-O2SqRBxmXNrCplFZpz91EtMVIDafifiZnDVndc2EAwIPPIMRHf5dvynyJqTJn4SJVCVMt0kq6qiZrbRIqnEUYK-yS60ZH8xbDpf54NFDOTyEagYlw3cNWLRXvSgb7ZLQeRI0geQuXlQ7zr1_6jP8e5QHp_LD26GTjjw7JDhRH5MljAuiDx0wCbeRUn2lV0pqja1c0o_0Mc1O0t6KTlxI_vbtthmKOlo4L2ivdb0S3qCSfHTId3D32h0FTTCF4jeO0CoC5gxSAjJWKNNcA7iwH3Fm7M2CTRLnxVXgMluwUxkUZYFkW6S6gQJwUieHHpF2UBZwQGjMNsTVcu81ApNpmzudb17aM5ZGWcEo6OCvzRa2XMV9PyNkf78_JHi4OIrtidkHa1ccSLp2rr_SVX-Jvfuil4w |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED50gvqk4sTfBvS1s02Tzr5uOKZu3R423Nto2ouK2Ip2D_OvN5d2kwmCb00LISS9XO7yfd8BXAn0SNiKmL8-ZatE4sS-1I4OpdSBstxNQltEQXcs7idyUpHVLRcGES34DBv0aO_y0zyZUarMWLgIgyYP1mFDCiFkSddaplR87lK0sAmXlZLmNQVM7UHUCYynIjwCF41FHyvVVKwz6exAtBhGiSF5bcwK1Ui-fik0_nucu1D_4e2x4dIj7cEaZvvwaFEBrG9Rk8gqQdUnVuSsZOnqOYtZO6bsFGvN2fA5p09vZqNhlKVlg4y1cvMjsRUyyWcdxp3bUbvrVOUUnBfPCwsHuTlKIUovCFzlK0RzmkPf2Lsx4bTpJqmtw5NS0U6RmjgDNY9ddYMkESdFM_UPoJblGR4C87hCT6e-MtuBCJWOjdfXpq05T1wl8QjqNCvT91IxY7qYkOM_3l_AVnfU7017d9HDCWzTQhHOy-OnUCs-ZnhmHH-hzu1yfwNhF6kw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Systems+of+Signals+Generating+and+Processing+in+the+Field+of+on+Board+Communications+%28Online%29&rft.atitle=Using+Machine+Learning+to+Identify+a+Camera+By+Photo+Image+with+On+Board+Communications&rft.au=Sineva%2C+I.+S.&rft.au=Tkachev%2C+V.+D.&rft.date=2024-03-12&rft.pub=IEEE&rft.eissn=2768-0118&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIEEECONF60226.2024.10496726&rft.externalDocID=10496726 |