Using Machine Learning to Identify a Camera By Photo Image with On Board Communications

This article explores the use of classical machine learning and Automnl methods to solve the problem of camera identification from photo images in the absence of metadata and limited computational and resource capabilities in on board communications. The experiments were conducted on the well-known...

Full description

Saved in:
Bibliographic Details
Published inSystems of Signals Generating and Processing in the Field of on Board Communications (Online) pp. 1 - 5
Main Authors Sineva, I. S., Tkachev, V. D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 12.03.2024
Subjects
Online AccessGet full text
ISSN2768-0118
DOI10.1109/IEEECONF60226.2024.10496726

Cover

Abstract This article explores the use of classical machine learning and Automnl methods to solve the problem of camera identification from photo images in the absence of metadata and limited computational and resource capabilities in on board communications. The experiments were conducted on the well-known Forchheim Image Database dataset using the Python programming language and libraries such as scikit-learn, auto-sklearn, skimage and pandas. The paper discusses the use of a local binary pattern (LBP) descriptor in combination with various filtering methods. A comparison of the classification results for each algorithm using different confidence and performance evaluation metrics was carried out. The experimental results showed that the Auto-sklearn algorithm achieved the best performance indicators when using the bilateral filtering method.
AbstractList This article explores the use of classical machine learning and Automnl methods to solve the problem of camera identification from photo images in the absence of metadata and limited computational and resource capabilities in on board communications. The experiments were conducted on the well-known Forchheim Image Database dataset using the Python programming language and libraries such as scikit-learn, auto-sklearn, skimage and pandas. The paper discusses the use of a local binary pattern (LBP) descriptor in combination with various filtering methods. A comparison of the classification results for each algorithm using different confidence and performance evaluation metrics was carried out. The experimental results showed that the Auto-sklearn algorithm achieved the best performance indicators when using the bilateral filtering method.
Author Sineva, I. S.
Tkachev, V. D.
Author_xml – sequence: 1
  givenname: I. S.
  surname: Sineva
  fullname: Sineva, I. S.
  email: iss@mtuci.ru
  organization: Moscow Technical University of Communications and Informatics,Moscow,Russia
– sequence: 2
  givenname: V. D.
  surname: Tkachev
  fullname: Tkachev, V. D.
  email: nindza07@mail.ru
  organization: Moscow Technical University of Communications and Informatics,Moscow,Russia
BookMark eNo1kM1Kw0AURkdRsNa-gYsB14l3_meWNqQaqNaFxWWZZG7bETORJFL69lLU1QfnwFl81-QidQkJuWOQMwbuvirLsli9LDRwrnMOXOYMpNOG6zMyc8ZZoUBYoZk8JxNutM2AMXtFZsPwAQCCgwQmJuR9PcS0o8--2ceEdIm-TycwdrQKmMa4PVJPC99i7-n8SF_33Um1fof0EMc9XSU673wfaNG17XeKjR9jl4Ybcrn1nwPO_nZK1ovyrXjKlqvHqnhYZpExN2bIQTlExbSGWtSIIBUKAcpaCAaa4DQ3MnCwSgblDG65h9qiBS6UNEFMye1vNyLi5quPre-Pm_8vxA-qOFSW
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IEEECONF60226.2024.10496726
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350383614
EISSN 2768-0118
EndPage 5
ExternalDocumentID 10496726
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-e2059ee51660b3bee045e3305880d70cd96274d20854d597ef2a0b8e8023547d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:09:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-e2059ee51660b3bee045e3305880d70cd96274d20854d597ef2a0b8e8023547d3
PageCount 5
ParticipantIDs ieee_primary_10496726
PublicationCentury 2000
PublicationDate 2024-March-12
PublicationDateYYYYMMDD 2024-03-12
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-12
  day: 12
PublicationDecade 2020
PublicationTitle Systems of Signals Generating and Processing in the Field of on Board Communications (Online)
PublicationTitleAbbrev IEEECONF
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204013
Score 1.8661628
Snippet This article explores the use of classical machine learning and Automnl methods to solve the problem of camera identification from photo images in the absence...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
AutoML
camera identification
Cameras
Filtering
local binary patterns
Machine learning
Machine learning algorithms
Metadata
multi-class classification
Performance evaluation
photo images
Title Using Machine Learning to Identify a Camera By Photo Image with On Board Communications
URI https://ieeexplore.ieee.org/document/10496726
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfBPTa2uZX1-uGYwhuOzjcbTTNi4rYDu0O8683L-0mEwRvTQshJH15eS_f9z1CbgTEKGyFzF-O2SqRBxmXNrCplFZpz91EtMVIDafifiZnDVndc2EAwIPPIMRHf5dvynyJqTJn4SJVCVMt0kq6qiZrbRIqnEUYK-yS60ZH8xbDpf54NFDOTyEagYlw3cNWLRXvSgb7ZLQeRI0geQuXlQ7zr1_6jP8e5QHp_LD26GTjjw7JDhRH5MljAuiDx0wCbeRUn2lV0pqja1c0o_0Mc1O0t6KTlxI_vbtthmKOlo4L2ivdb0S3qCSfHTId3D32h0FTTCF4jeO0CoC5gxSAjJWKNNcA7iwH3Fm7M2CTRLnxVXgMluwUxkUZYFkW6S6gQJwUieHHpF2UBZwQGjMNsTVcu81ApNpmzudb17aM5ZGWcEo6OCvzRa2XMV9PyNkf78_JHi4OIrtidkHa1ccSLp2rr_SVX-Jvfuil4w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED50gvqk4sTfBvS1s02Tzr5uOKZu3R423Nto2ouK2Ip2D_OvN5d2kwmCb00LISS9XO7yfd8BXAn0SNiKmL8-ZatE4sS-1I4OpdSBstxNQltEQXcs7idyUpHVLRcGES34DBv0aO_y0zyZUarMWLgIgyYP1mFDCiFkSddaplR87lK0sAmXlZLmNQVM7UHUCYynIjwCF41FHyvVVKwz6exAtBhGiSF5bcwK1Ui-fik0_nucu1D_4e2x4dIj7cEaZvvwaFEBrG9Rk8gqQdUnVuSsZOnqOYtZO6bsFGvN2fA5p09vZqNhlKVlg4y1cvMjsRUyyWcdxp3bUbvrVOUUnBfPCwsHuTlKIUovCFzlK0RzmkPf2Lsx4bTpJqmtw5NS0U6RmjgDNY9ddYMkESdFM_UPoJblGR4C87hCT6e-MtuBCJWOjdfXpq05T1wl8QjqNCvT91IxY7qYkOM_3l_AVnfU7017d9HDCWzTQhHOy-OnUCs-ZnhmHH-hzu1yfwNhF6kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Systems+of+Signals+Generating+and+Processing+in+the+Field+of+on+Board+Communications+%28Online%29&rft.atitle=Using+Machine+Learning+to+Identify+a+Camera+By+Photo+Image+with+On+Board+Communications&rft.au=Sineva%2C+I.+S.&rft.au=Tkachev%2C+V.+D.&rft.date=2024-03-12&rft.pub=IEEE&rft.eissn=2768-0118&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIEEECONF60226.2024.10496726&rft.externalDocID=10496726