Enhancing Twitter Sentiment Analysis using Attention-based BiLSTM and BERT Embedding

Sentiment analysis is a rapidly expanding field with a broad spectrum of uses. Researchers and industrialists alike have found analyzing sentiments on social media platforms like Twitter, to be of particular interest due to the influx of opinionated data. In this paper, we propose an Attention-based...

Full description

Saved in:
Bibliographic Details
Published in2023 9th International Conference on Smart Computing and Communications (ICSCC) pp. 36 - 40
Main Authors Ramakrishnan, Sandhya, Dhinesh Babu, L.D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.08.2023
Subjects
Online AccessGet full text
DOI10.1109/ICSCC59169.2023.10335010

Cover

Abstract Sentiment analysis is a rapidly expanding field with a broad spectrum of uses. Researchers and industrialists alike have found analyzing sentiments on social media platforms like Twitter, to be of particular interest due to the influx of opinionated data. In this paper, we propose an Attention-based BiLSTM sentiment model for Twitter data that is integrated with BERT embedding. The BERT pre-trained language model represents each word as a vector, while the Bi-Directional Long Short Term Memory (BiLSTM) extracts word information from both directions. To enhance prediction accuracy, the attention mechanism determines how much each word contributes to the final score. We conducted experiments using the Sentiment140 dataset and evaluated the results based on ac-curacy, recall, precision, and Fl-Score. The empirical results reveal that the pro-posed model outperforms the baseline model. Our model effectively analyzes and interpret the vast amount of opinionated data on Twitter providing valuable in-sights for researchers and businesses alike.
AbstractList Sentiment analysis is a rapidly expanding field with a broad spectrum of uses. Researchers and industrialists alike have found analyzing sentiments on social media platforms like Twitter, to be of particular interest due to the influx of opinionated data. In this paper, we propose an Attention-based BiLSTM sentiment model for Twitter data that is integrated with BERT embedding. The BERT pre-trained language model represents each word as a vector, while the Bi-Directional Long Short Term Memory (BiLSTM) extracts word information from both directions. To enhance prediction accuracy, the attention mechanism determines how much each word contributes to the final score. We conducted experiments using the Sentiment140 dataset and evaluated the results based on ac-curacy, recall, precision, and Fl-Score. The empirical results reveal that the pro-posed model outperforms the baseline model. Our model effectively analyzes and interpret the vast amount of opinionated data on Twitter providing valuable in-sights for researchers and businesses alike.
Author Dhinesh Babu, L.D.
Ramakrishnan, Sandhya
Author_xml – sequence: 1
  givenname: Sandhya
  surname: Ramakrishnan
  fullname: Ramakrishnan, Sandhya
  organization: Vellore Institute of Technology,School of Information Technology & Engineering,Vellore,India
– sequence: 2
  givenname: L.D.
  surname: Dhinesh Babu
  fullname: Dhinesh Babu, L.D.
  organization: Vellore Institute of Technology,School of Information Technology & Engineering,Vellore,India
BookMark eNo1j0FLxDAUhCPoQdf9Bx7yB1rfS1JNjrVUXagItp6Xt82rBrZZaSuy_96IepkZ-IaBuRCn8RBZCImQI4K73lRtVRUOb1yuQOkcQesCEE7E2t06m7JGAw7ORVfHd4p9iG-y-wrLwpNsOS5hTCLLSPvjHGb5Of8UyoQTOsRsRzN7eReatnuSFFOsXzpZjzv2PjUvxdlA-5nXf74Sr_d1Vz1mzfPDpiqbLCC6JfPeDlZhAUYpw2CBfW8H8saSA1SEir0zjnpvyZMyumDHqL0tBtsb6PVKXP3uBmbefkxhpOm4_T-rvwEvfU7x
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSCC59169.2023.10335010
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350314090
EndPage 40
ExternalDocumentID 10335010
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-dd8f821504224e080edc8fad48a9012a12ed949acd8ada2435e9e13d85f8c40c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:37 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-dd8f821504224e080edc8fad48a9012a12ed949acd8ada2435e9e13d85f8c40c3
PageCount 5
ParticipantIDs ieee_primary_10335010
PublicationCentury 2000
PublicationDate 2023-Aug.-17
PublicationDateYYYYMMDD 2023-08-17
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-Aug.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2023 9th International Conference on Smart Computing and Communications (ICSCC)
PublicationTitleAbbrev ICSCC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8825839
Snippet Sentiment analysis is a rapidly expanding field with a broad spectrum of uses. Researchers and industrialists alike have found analyzing sentiments on social...
SourceID ieee
SourceType Publisher
StartPage 36
SubjectTerms Analytical models
Attention
BERT
BiLSTM
Blogs
Computational modeling
Deep learning
Embedding
Semantics
Sentiment analysis
Social networking (online)
Title Enhancing Twitter Sentiment Analysis using Attention-based BiLSTM and BERT Embedding
URI https://ieeexplore.ieee.org/document/10335010
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA26kycVJ_4mB6-pa5OuyVFLxxQ3xHWw20jzfZ1D7EQ2BP9683WroiB4C2lJSkJ5L8l7L4xdEinXEkPhqUEklLMgTFI64TxVLrQ20EHyOw-G3f5Y3U3iycasXnthELEWn2FAxfosHxZuRVtl_g-XdA7mV-jbSWLWZq1GndMxV7fpKE1jz3fIgBLJoHn9x8UpNW70dtmw6XEtF3kOVssicB-_whj__Ul7rP1t0eMPX-Czz7awOmB5Vj1RfkY14_n7nHw6fERqIGqDN_EjnKTuM37tH9dKR0FABvxmfj_KB9xWvpg95jx7KRCo7TYb97I87YvNtQliHoZmKQB0qT2SU7qXQs8IEZwuLShtPfhHNowQjDLWgbZgI8-X0GAoQceldqrj5CFrVYsKjxhPpCp04WwZ-WWaxqQILcSuC1LHyulEHrM2Dcn0dZ2MMW1G4-SP-lO2QzNDe7JhcsZay7cVnntQXxYX9WR-Avecoj8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA0yD3pSceJvc_CauTbpmh61VDbdhrgOdhtpvq9ziJ1Ih-Bfb75uVRQEb6GlaUko733Jey-MXRIp1xI94aiBL5Q1IKIwt8I6qpxpHUEbye88GHa6Y3U3CSZrs3rlhUHESnyGLWpWe_mwsEtaKnN_uKR9MFehbwaurAhXdq1an9OOrnrxKI4Dx3jIguLLVv3Aj6NTKuS43WHD-p0rwchza1lmLfvxK47x3x-1y5rfJj3-8AU_e2wDi32WJsUTJWgUM56-z8mpw0ekB6I-eB1AwknsPuPX7naldRQEZcBv5v1ROuCmcM3kMeXJS4ZAfTfZ-DZJ465YH5wg5p4XlQJA59phOeV7KXScEMHq3IDSxsG_bzwfIVKRsaANGN8xJozQk6CDXFvVtvKANYpFgYeMh1JlOrMm912hpjHMPAOB7YDUgbI6lEesSUMyfV1lY0zr0Tj-4_oF2-qmg_603xven7BtmiVaofXCU9Yo35Z45iC-zM6rif0ErhilkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+9th+International+Conference+on+Smart+Computing+and+Communications+%28ICSCC%29&rft.atitle=Enhancing+Twitter+Sentiment+Analysis+using+Attention-based+BiLSTM+and+BERT+Embedding&rft.au=Ramakrishnan%2C+Sandhya&rft.au=Dhinesh+Babu%2C+L.D.&rft.date=2023-08-17&rft.pub=IEEE&rft.spage=36&rft.epage=40&rft_id=info:doi/10.1109%2FICSCC59169.2023.10335010&rft.externalDocID=10335010