Enhancing Twitter Sentiment Analysis using Attention-based BiLSTM and BERT Embedding
Sentiment analysis is a rapidly expanding field with a broad spectrum of uses. Researchers and industrialists alike have found analyzing sentiments on social media platforms like Twitter, to be of particular interest due to the influx of opinionated data. In this paper, we propose an Attention-based...
Saved in:
Published in | 2023 9th International Conference on Smart Computing and Communications (ICSCC) pp. 36 - 40 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
17.08.2023
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICSCC59169.2023.10335010 |
Cover
Abstract | Sentiment analysis is a rapidly expanding field with a broad spectrum of uses. Researchers and industrialists alike have found analyzing sentiments on social media platforms like Twitter, to be of particular interest due to the influx of opinionated data. In this paper, we propose an Attention-based BiLSTM sentiment model for Twitter data that is integrated with BERT embedding. The BERT pre-trained language model represents each word as a vector, while the Bi-Directional Long Short Term Memory (BiLSTM) extracts word information from both directions. To enhance prediction accuracy, the attention mechanism determines how much each word contributes to the final score. We conducted experiments using the Sentiment140 dataset and evaluated the results based on ac-curacy, recall, precision, and Fl-Score. The empirical results reveal that the pro-posed model outperforms the baseline model. Our model effectively analyzes and interpret the vast amount of opinionated data on Twitter providing valuable in-sights for researchers and businesses alike. |
---|---|
AbstractList | Sentiment analysis is a rapidly expanding field with a broad spectrum of uses. Researchers and industrialists alike have found analyzing sentiments on social media platforms like Twitter, to be of particular interest due to the influx of opinionated data. In this paper, we propose an Attention-based BiLSTM sentiment model for Twitter data that is integrated with BERT embedding. The BERT pre-trained language model represents each word as a vector, while the Bi-Directional Long Short Term Memory (BiLSTM) extracts word information from both directions. To enhance prediction accuracy, the attention mechanism determines how much each word contributes to the final score. We conducted experiments using the Sentiment140 dataset and evaluated the results based on ac-curacy, recall, precision, and Fl-Score. The empirical results reveal that the pro-posed model outperforms the baseline model. Our model effectively analyzes and interpret the vast amount of opinionated data on Twitter providing valuable in-sights for researchers and businesses alike. |
Author | Dhinesh Babu, L.D. Ramakrishnan, Sandhya |
Author_xml | – sequence: 1 givenname: Sandhya surname: Ramakrishnan fullname: Ramakrishnan, Sandhya organization: Vellore Institute of Technology,School of Information Technology & Engineering,Vellore,India – sequence: 2 givenname: L.D. surname: Dhinesh Babu fullname: Dhinesh Babu, L.D. organization: Vellore Institute of Technology,School of Information Technology & Engineering,Vellore,India |
BookMark | eNo1j0FLxDAUhCPoQdf9Bx7yB1rfS1JNjrVUXagItp6Xt82rBrZZaSuy_96IepkZ-IaBuRCn8RBZCImQI4K73lRtVRUOb1yuQOkcQesCEE7E2t06m7JGAw7ORVfHd4p9iG-y-wrLwpNsOS5hTCLLSPvjHGb5Of8UyoQTOsRsRzN7eReatnuSFFOsXzpZjzv2PjUvxdlA-5nXf74Sr_d1Vz1mzfPDpiqbLCC6JfPeDlZhAUYpw2CBfW8H8saSA1SEir0zjnpvyZMyumDHqL0tBtsb6PVKXP3uBmbefkxhpOm4_T-rvwEvfU7x |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSCC59169.2023.10335010 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350314090 |
EndPage | 40 |
ExternalDocumentID | 10335010 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-dd8f821504224e080edc8fad48a9012a12ed949acd8ada2435e9e13d85f8c40c3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:25:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-dd8f821504224e080edc8fad48a9012a12ed949acd8ada2435e9e13d85f8c40c3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10335010 |
PublicationCentury | 2000 |
PublicationDate | 2023-Aug.-17 |
PublicationDateYYYYMMDD | 2023-08-17 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-Aug.-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | 2023 9th International Conference on Smart Computing and Communications (ICSCC) |
PublicationTitleAbbrev | ICSCC |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8825839 |
Snippet | Sentiment analysis is a rapidly expanding field with a broad spectrum of uses. Researchers and industrialists alike have found analyzing sentiments on social... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 36 |
SubjectTerms | Analytical models Attention BERT BiLSTM Blogs Computational modeling Deep learning Embedding Semantics Sentiment analysis Social networking (online) |
Title | Enhancing Twitter Sentiment Analysis using Attention-based BiLSTM and BERT Embedding |
URI | https://ieeexplore.ieee.org/document/10335010 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA26kycVJ_4mB6-pa5OuyVFLxxQ3xHWw20jzfZ1D7EQ2BP9683WroiB4C2lJSkJ5L8l7L4xdEinXEkPhqUEklLMgTFI64TxVLrQ20EHyOw-G3f5Y3U3iycasXnthELEWn2FAxfosHxZuRVtl_g-XdA7mV-jbSWLWZq1GndMxV7fpKE1jz3fIgBLJoHn9x8UpNW70dtmw6XEtF3kOVssicB-_whj__Ul7rP1t0eMPX-Czz7awOmB5Vj1RfkY14_n7nHw6fERqIGqDN_EjnKTuM37tH9dKR0FABvxmfj_KB9xWvpg95jx7KRCo7TYb97I87YvNtQliHoZmKQB0qT2SU7qXQs8IEZwuLShtPfhHNowQjDLWgbZgI8-X0GAoQceldqrj5CFrVYsKjxhPpCp04WwZ-WWaxqQILcSuC1LHyulEHrM2Dcn0dZ2MMW1G4-SP-lO2QzNDe7JhcsZay7cVnntQXxYX9WR-Avecoj8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA0yD3pSceJvc_CauTbpmh61VDbdhrgOdhtpvq9ziJ1Ih-Bfb75uVRQEb6GlaUko733Jey-MXRIp1xI94aiBL5Q1IKIwt8I6qpxpHUEbye88GHa6Y3U3CSZrs3rlhUHESnyGLWpWe_mwsEtaKnN_uKR9MFehbwaurAhXdq1an9OOrnrxKI4Dx3jIguLLVv3Aj6NTKuS43WHD-p0rwchza1lmLfvxK47x3x-1y5rfJj3-8AU_e2wDi32WJsUTJWgUM56-z8mpw0ekB6I-eB1AwknsPuPX7naldRQEZcBv5v1ROuCmcM3kMeXJS4ZAfTfZ-DZJ465YH5wg5p4XlQJA59phOeV7KXScEMHq3IDSxsG_bzwfIVKRsaANGN8xJozQk6CDXFvVtvKANYpFgYeMh1JlOrMm912hpjHMPAOB7YDUgbI6lEesSUMyfV1lY0zr0Tj-4_oF2-qmg_603xven7BtmiVaofXCU9Yo35Z45iC-zM6rif0ErhilkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+9th+International+Conference+on+Smart+Computing+and+Communications+%28ICSCC%29&rft.atitle=Enhancing+Twitter+Sentiment+Analysis+using+Attention-based+BiLSTM+and+BERT+Embedding&rft.au=Ramakrishnan%2C+Sandhya&rft.au=Dhinesh+Babu%2C+L.D.&rft.date=2023-08-17&rft.pub=IEEE&rft.spage=36&rft.epage=40&rft_id=info:doi/10.1109%2FICSCC59169.2023.10335010&rft.externalDocID=10335010 |