AI-Enhanced Modal Decomposition Method for Fast and Efficient PCB Modeling and Signal Integrity

An AI-enhanced modal decomposition method is proposed in this paper for fast and efficient high-speed multilayered PCB modeling and integrity. Depending on modal patterns of PCB local structures, modal decomposition method divides a given high-speed PCB interconnections into independent modal cells,...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE 7th International Symposium on Electromagnetic Compatibility (ISEMC) pp. 1 - 4
Main Authors Gao, Zhaodong, Su, Ming, Guo, Xingyue, Chen, Xilian, Yan, Chuming, Liu, Yuanan
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.10.2023
Subjects
Online AccessGet full text
DOI10.1109/ISEMC58300.2023.10370118

Cover

Abstract An AI-enhanced modal decomposition method is proposed in this paper for fast and efficient high-speed multilayered PCB modeling and integrity. Depending on modal patterns of PCB local structures, modal decomposition method divides a given high-speed PCB interconnections into independent modal cells, and take advantages of different evaluation methods (analytical, numerical, AI-based) to analyze each modal cell. With the assistance of AI technology, compound methods find a way to compute complex PCB structures effectively in this modal decomposition method. We briefly introduced the architecture and workflow of the proposed method, and then gave a practical application example to show the validity. Data show frequency error of 2.3/1.4% and amplitude error of 0.3/0.6dB for 0-28/28-40GHz between measurement and model prediction, showing great potentials of the AI-enhanced modal decomposition method for PCB modeling and signal integrity.
AbstractList An AI-enhanced modal decomposition method is proposed in this paper for fast and efficient high-speed multilayered PCB modeling and integrity. Depending on modal patterns of PCB local structures, modal decomposition method divides a given high-speed PCB interconnections into independent modal cells, and take advantages of different evaluation methods (analytical, numerical, AI-based) to analyze each modal cell. With the assistance of AI technology, compound methods find a way to compute complex PCB structures effectively in this modal decomposition method. We briefly introduced the architecture and workflow of the proposed method, and then gave a practical application example to show the validity. Data show frequency error of 2.3/1.4% and amplitude error of 0.3/0.6dB for 0-28/28-40GHz between measurement and model prediction, showing great potentials of the AI-enhanced modal decomposition method for PCB modeling and signal integrity.
Author Guo, Xingyue
Gao, Zhaodong
Su, Ming
Chen, Xilian
Yan, Chuming
Liu, Yuanan
Author_xml – sequence: 1
  givenname: Zhaodong
  surname: Gao
  fullname: Gao, Zhaodong
  email: zdgao@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications,Beijing,China
– sequence: 2
  givenname: Ming
  surname: Su
  fullname: Su, Ming
  email: suming@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications,Beijing,China
– sequence: 3
  givenname: Xingyue
  surname: Guo
  fullname: Guo, Xingyue
  email: gxy4010@126.com
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications,Beijing,China
– sequence: 4
  givenname: Xilian
  surname: Chen
  fullname: Chen, Xilian
  email: chenxilian@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications,Beijing,China
– sequence: 5
  givenname: Chuming
  surname: Yan
  fullname: Yan, Chuming
  email: Yanchuming@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications,Beijing,China
– sequence: 6
  givenname: Yuanan
  surname: Liu
  fullname: Liu, Yuanan
  email: yuliu@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications,Beijing,China
BookMark eNo1j71OwzAURo0EA5S-AYNfIOXeOHHssYSURmoFUmGu3Pg6tZTaVeKlb8__9A1H50jfHbsOMRBjHGGBCPqx3TXbulQCYJFDLhYIogJEdcXmutJKlCCEQKhu2X7ZZk04mtCR5dtozcCfqYunc5x88jHwLaVjtNzFka_MlLgJljfO-c5TSPytfvq2aPCh_0E734evRhsS9aNPl3t248ww0fxvZ-xj1bzX62zz-tLWy03mEXXKLBR5BYAFamnEobKl6gqSKB2Wuey07FDlFqUqoCKhnFXSKou51HgQ6KSYsYffriei_Xn0JzNe9v-_xSc-AFDe
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISEMC58300.2023.10370118
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350333107
EndPage 4
ExternalDocumentID 10370118
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62090015
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-d04270014196a3b7d58c4e616f1526c96c182d168407e38fd86d8d12691b31f63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:25:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-d04270014196a3b7d58c4e616f1526c96c182d168407e38fd86d8d12691b31f63
PageCount 4
ParticipantIDs ieee_primary_10370118
PublicationCentury 2000
PublicationDate 2023-Oct.-20
PublicationDateYYYYMMDD 2023-10-20
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2023 IEEE 7th International Symposium on Electromagnetic Compatibility (ISEMC)
PublicationTitleAbbrev ISEMC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2465737
Snippet An AI-enhanced modal decomposition method is proposed in this paper for fast and efficient high-speed multilayered PCB modeling and integrity. Depending on...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial Intelligence
Computational modeling
Computer architecture
Data models
Electric potential
Electromagnetic compatibility
Machine learning
Measurement uncertainty
Modal Decomposition
PCB Modeling
Predictive models
Signal Integrity
Title AI-Enhanced Modal Decomposition Method for Fast and Efficient PCB Modeling and Signal Integrity
URI https://ieeexplore.ieee.org/document/10370118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA26kycVJ_4mB6_pmrbL0qPOjk3oGMzBbiPJl-hQOtHu4l9vvmxVFARvpT9I-RJ4r8173yPkGoQyUmScJZ6LsixRwLRDg08sNMSJTZKQDViOxXCW3c-7861ZPXhhrLVBfGYjPAx7-bAya_xV1kFPGzold8muX2cbs1ajzonzzmhalP2uTOM4wlDwqLn9R3BKwI3BPhk3I27kIs_RutaR-fjVjPHfr3RA2t8WPTr5Ap9DsmOrI7K4GbGiegqb-rRcgXqhdxZF41tlFi1DXjT1RJUO1HtNVQW0CE0k_Ch00r_Fp4JDPVyaLh_9OqOj0FLC0_U2mQ2Kh_6QbRMU2JLzvGaASRpBy5kLleoedKXJrODCedgWJhfGf14Ax4YvPZtKB1KABJ6InOuUO5Eek1a1quyJL3IuMqm5Q0rgMcwpMEKmSkPPMzaVuVPSxuosXjdNMhZNYc7-OH9O9nCSEAaS-IK06re1vfT4XuurMK-fptWjqg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA46D3pSceK3OXhN16Rtlh51dqy6jsE28FbyqUPpRLuLv94kWxUFwVtpCSlvCs-b5vkA4EpRLhmNMSK2F0Ux4QoJ4wQ-IRUqJJoQnw1YjOhgFt89JA9rsbrXwmitPflMB-7Sn-WrhVy6X2Udp2lzSslNsJXYbQVbybUafk6YdvJJVvQSFoVh4GLBg2bAj-gUjxz9XTBq5lwRRp6DZS0C-fHLjvHfL7UH2t8iPTj-gp99sKGrA1Be5yirnvyxPiwWir_AW-1o42tuFix8YjS0rSrs8_ca8krBzNtI2FnguHfjRnmNun80mT_aLw3m3lTCNuxtMOtn094ArTMU0BzjtEbKZWl4NmdKeSS6KmEy1hRTY4GbypRKu8FQ2Fm-dHXEjGJUMYUJTbGIsKHRIWhVi0of2SKnNGYCG9cUWBQzXEnKIi5U1_ZsPDbHoO2qU76ubDLKpjAnf9y_BNuDaTEsh_no_hTsuAVzoEDCM9Cq35b63KJ9LS78Gn8Cdqum_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+7th+International+Symposium+on+Electromagnetic+Compatibility+%28ISEMC%29&rft.atitle=AI-Enhanced+Modal+Decomposition+Method+for+Fast+and+Efficient+PCB+Modeling+and+Signal+Integrity&rft.au=Gao%2C+Zhaodong&rft.au=Su%2C+Ming&rft.au=Guo%2C+Xingyue&rft.au=Chen%2C+Xilian&rft.date=2023-10-20&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISEMC58300.2023.10370118&rft.externalDocID=10370118