YOLOv6 for Fire Images detection
Early fire forest detection is crucial for fast and effective intervention. Many research have been done on this subject starting by sensor based systems and arriving to image processing which leverage the computer vision advancements. Our work refers to one of the latest algorithms in forest fire d...
Saved in:
Published in | Proceedings (International Conference on Cyberworlds. Online) pp. 500 - 501 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
03.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2642-3596 |
DOI | 10.1109/CW58918.2023.00086 |
Cover
Abstract | Early fire forest detection is crucial for fast and effective intervention. Many research have been done on this subject starting by sensor based systems and arriving to image processing which leverage the computer vision advancements. Our work refers to one of the latest algorithms in forest fire detection: YOLO. We present in this paper a detailed description of the architecture of the YOLO algorithm with an emphasis to the YOLOv6 which is the latest version of the YOLO algorithms. The performance of the studied algorithm is evaluated on a personal database containing 28334 images, with 10534 forest fire images and 17800 non-fire images. The experimental results of applying the YOLOv6 proved the efficiency of the method in fast and accurate fires detection even in large size images and low resolutions. This result makes the studied algorithm so suitable for both satellite and ground based images analysis. |
---|---|
AbstractList | Early fire forest detection is crucial for fast and effective intervention. Many research have been done on this subject starting by sensor based systems and arriving to image processing which leverage the computer vision advancements. Our work refers to one of the latest algorithms in forest fire detection: YOLO. We present in this paper a detailed description of the architecture of the YOLO algorithm with an emphasis to the YOLOv6 which is the latest version of the YOLO algorithms. The performance of the studied algorithm is evaluated on a personal database containing 28334 images, with 10534 forest fire images and 17800 non-fire images. The experimental results of applying the YOLOv6 proved the efficiency of the method in fast and accurate fires detection even in large size images and low resolutions. This result makes the studied algorithm so suitable for both satellite and ground based images analysis. |
Author | Sayadi, Mounir Jabnouni, Hedi Arfaoui, Imen Bouchouicha, Moez Cherni, Mohamed Ali |
Author_xml | – sequence: 1 givenname: Hedi surname: Jabnouni fullname: Jabnouni, Hedi email: hedi.jabnouni@gmail.com organization: Université de Sousse,Institut Supérieur d'Informatique et des Techniques de Communication de H. Sousse,H. Sousse,Tunisie,4011 – sequence: 2 givenname: Imen surname: Arfaoui fullname: Arfaoui, Imen email: arf.imen@gmail.com organization: Université de Tunis,LR13 ES03 SIME, ENSIT, Montfleury,Tunis,Tunisia,1008 – sequence: 3 givenname: Mohamed Ali surname: Cherni fullname: Cherni, Mohamed Ali email: mohamed.ali.cherni@gmail.com organization: Université de Tunis,LR13 ES03 SIME, ENSIT, Montfleury,Tunis,Tunisia,1008 – sequence: 4 givenname: Moez surname: Bouchouicha fullname: Bouchouicha, Moez email: moez.bouchouicha@univ-tln.fr organization: Université de Toulon, Aix Marseille Univ,CNRS, LIS,Toulon,France,83041 – sequence: 5 givenname: Mounir surname: Sayadi fullname: Sayadi, Mounir email: mounir.sayadi@esstt.rnu.tn organization: Université de Tunis,LR13 ES03 SIME, ENSIT, Montfleury,Tunis,Tunisia,1008 |
BookMark | eNotjcFKxDAQQKMouK79AfGQH2idyZg0c5Ti6kKhlwXxtCTprETcVtoi-Pcu6OldHu9dq4thHESpW4QKEfi-ebWe0VcGDFUA4N2ZKrhmTxYIrbN0rlbGPZiSLLsrVczzx0kjZABjV0q_dW337fRhnPQmT6K3x_Aus-5lkbTkcbhRl4fwOUvxz7XabZ52zUvZds_b5rEtMyIvZbLWe2IvZNLpJqmvRcCjp-DYBIw1RWYXQ2-joCMMKCgxkIsJo9Ba3f1ls4jsv6Z8DNPPHoGotlTTL3JhP1o |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CW58918.2023.00086 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798350315653 |
EISSN | 2642-3596 |
EndPage | 501 |
ExternalDocumentID | 10337537 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Foreign Affairs funderid: 10.13039/501100003556 |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i119t-c5588398e32c642ecd7ee08183a692a1b73b996bad5be1631a1e1eba36bc1be3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:34:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-c5588398e32c642ecd7ee08183a692a1b73b996bad5be1631a1e1eba36bc1be3 |
PageCount | 2 |
ParticipantIDs | ieee_primary_10337537 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct.-3 |
PublicationDateYYYYMMDD | 2023-10-03 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-3 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings (International Conference on Cyberworlds. Online) |
PublicationTitleAbbrev | CW |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003190025 |
Score | 1.851389 |
Snippet | Early fire forest detection is crucial for fast and effective intervention. Many research have been done on this subject starting by sensor based systems and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 500 |
SubjectTerms | Computer vision Deep learning Fire detection Forest Fire detection YOLOv6 |
Title | YOLOv6 for Fire Images detection |
URI | https://ieeexplore.ieee.org/document/10337537 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED3RTkzlo4hveWBNqeM4tueKqiBoGYooU5VzDgkhUgQJA7-ec9oUhITEFmVJ_Hnv2e_dAZzFNkXzKH3kTGaZoMgkcjY3kbF9r6THmFQwCt-M09FdcjXTs5VZvfbCEFEtPqNeeKzv8vOFr8JRGa9wpRhemxa0jHFLs9b6QIXnUgjgjTGm784H96FkXtBvxSGNaT_4pX-UUKkjyLAD4-bbS-HIc68qsec_f6Vl_PfPbUH326wnbtdhaBs2qNiBTlOtQawW7y6Ih8n15CMVjFLFkDc6cfnCe8m7yKms5VhFF6bDi-lgFK3qI0RPUroy8lpbxjeWVOyZRpDPDVFIUaey1MWZRKOQ6QxmuUZi3CUzSZIwUyl6iaT2oF0sCtoHwRRZMzDhMVOK-WFiNbmEjEaLOk5QH0A3NHj-usyAMW_aevjH-yPYDJ1ei97UMbTLt4pOOHiXeFoP2hc6M5YW |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGWAqH0V844E1pY7j2Jkrqhb6wVBEmaqcc0gIkSJIGfj1nNOmICQktihLYp3te89-7w7gIrQxmkfpgsSklgmKjILEZiYwtuWUdBiS8kbhwTDu3kXXEz1ZmtVLLwwRleIzavrH8i4_m7m5PyrjFa4Uw2uzDhuaaYVZ2LVWRyo8m3wKr6wxreSyfe-b5nkFV-gLmba8Y_pHE5Uyh3TqMKy-vpCOPDfnBTbd56_CjP_-vW1ofNv1xO0qEe3AGuW7UK_6NYjl8t0D8TDqjz5iwThVdHirE70X3k3eRUZFKcjKGzDuXI3b3WDZISF4kjIpAqe1ZYRjSYWOiQS5zBD5InUqjZMwlWgUMqHBNNNIjLxkKkkSpipGJ5HUPtTyWU4HIJgka4YmHDWlmCFGVlMSkdFoUYcR6kNo-AFPXxc1MKbVWI_-eH8Om93xoD_t94Y3x7DlA1BK4NQJ1Iq3OZ1yKi_wrAzgF1VOmWc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Conference+on+Cyberworlds.+Online%29&rft.atitle=YOLOv6+for+Fire+Images+detection&rft.au=Jabnouni%2C+Hedi&rft.au=Arfaoui%2C+Imen&rft.au=Cherni%2C+Mohamed+Ali&rft.au=Bouchouicha%2C+Moez&rft.date=2023-10-03&rft.pub=IEEE&rft.eissn=2642-3596&rft.spage=500&rft.epage=501&rft_id=info:doi/10.1109%2FCW58918.2023.00086&rft.externalDocID=10337537 |