YOLOv6 for Fire Images detection

Early fire forest detection is crucial for fast and effective intervention. Many research have been done on this subject starting by sensor based systems and arriving to image processing which leverage the computer vision advancements. Our work refers to one of the latest algorithms in forest fire d...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Conference on Cyberworlds. Online) pp. 500 - 501
Main Authors Jabnouni, Hedi, Arfaoui, Imen, Cherni, Mohamed Ali, Bouchouicha, Moez, Sayadi, Mounir
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.10.2023
Subjects
Online AccessGet full text
ISSN2642-3596
DOI10.1109/CW58918.2023.00086

Cover

Abstract Early fire forest detection is crucial for fast and effective intervention. Many research have been done on this subject starting by sensor based systems and arriving to image processing which leverage the computer vision advancements. Our work refers to one of the latest algorithms in forest fire detection: YOLO. We present in this paper a detailed description of the architecture of the YOLO algorithm with an emphasis to the YOLOv6 which is the latest version of the YOLO algorithms. The performance of the studied algorithm is evaluated on a personal database containing 28334 images, with 10534 forest fire images and 17800 non-fire images. The experimental results of applying the YOLOv6 proved the efficiency of the method in fast and accurate fires detection even in large size images and low resolutions. This result makes the studied algorithm so suitable for both satellite and ground based images analysis.
AbstractList Early fire forest detection is crucial for fast and effective intervention. Many research have been done on this subject starting by sensor based systems and arriving to image processing which leverage the computer vision advancements. Our work refers to one of the latest algorithms in forest fire detection: YOLO. We present in this paper a detailed description of the architecture of the YOLO algorithm with an emphasis to the YOLOv6 which is the latest version of the YOLO algorithms. The performance of the studied algorithm is evaluated on a personal database containing 28334 images, with 10534 forest fire images and 17800 non-fire images. The experimental results of applying the YOLOv6 proved the efficiency of the method in fast and accurate fires detection even in large size images and low resolutions. This result makes the studied algorithm so suitable for both satellite and ground based images analysis.
Author Sayadi, Mounir
Jabnouni, Hedi
Arfaoui, Imen
Bouchouicha, Moez
Cherni, Mohamed Ali
Author_xml – sequence: 1
  givenname: Hedi
  surname: Jabnouni
  fullname: Jabnouni, Hedi
  email: hedi.jabnouni@gmail.com
  organization: Université de Sousse,Institut Supérieur d'Informatique et des Techniques de Communication de H. Sousse,H. Sousse,Tunisie,4011
– sequence: 2
  givenname: Imen
  surname: Arfaoui
  fullname: Arfaoui, Imen
  email: arf.imen@gmail.com
  organization: Université de Tunis,LR13 ES03 SIME, ENSIT, Montfleury,Tunis,Tunisia,1008
– sequence: 3
  givenname: Mohamed Ali
  surname: Cherni
  fullname: Cherni, Mohamed Ali
  email: mohamed.ali.cherni@gmail.com
  organization: Université de Tunis,LR13 ES03 SIME, ENSIT, Montfleury,Tunis,Tunisia,1008
– sequence: 4
  givenname: Moez
  surname: Bouchouicha
  fullname: Bouchouicha, Moez
  email: moez.bouchouicha@univ-tln.fr
  organization: Université de Toulon, Aix Marseille Univ,CNRS, LIS,Toulon,France,83041
– sequence: 5
  givenname: Mounir
  surname: Sayadi
  fullname: Sayadi, Mounir
  email: mounir.sayadi@esstt.rnu.tn
  organization: Université de Tunis,LR13 ES03 SIME, ENSIT, Montfleury,Tunis,Tunisia,1008
BookMark eNotjcFKxDAQQKMouK79AfGQH2idyZg0c5Ti6kKhlwXxtCTprETcVtoi-Pcu6OldHu9dq4thHESpW4QKEfi-ebWe0VcGDFUA4N2ZKrhmTxYIrbN0rlbGPZiSLLsrVczzx0kjZABjV0q_dW337fRhnPQmT6K3x_Aus-5lkbTkcbhRl4fwOUvxz7XabZ52zUvZds_b5rEtMyIvZbLWe2IvZNLpJqmvRcCjp-DYBIw1RWYXQ2-joCMMKCgxkIsJo9Ba3f1ls4jsv6Z8DNPPHoGotlTTL3JhP1o
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CW58918.2023.00086
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798350315653
EISSN 2642-3596
EndPage 501
ExternalDocumentID 10337537
Genre orig-research
GrantInformation_xml – fundername: Ministry of Foreign Affairs
  funderid: 10.13039/501100003556
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-c5588398e32c642ecd7ee08183a692a1b73b996bad5be1631a1e1eba36bc1be3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:34:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-c5588398e32c642ecd7ee08183a692a1b73b996bad5be1631a1e1eba36bc1be3
PageCount 2
ParticipantIDs ieee_primary_10337537
PublicationCentury 2000
PublicationDate 2023-Oct.-3
PublicationDateYYYYMMDD 2023-10-03
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-3
  day: 03
PublicationDecade 2020
PublicationTitle Proceedings (International Conference on Cyberworlds. Online)
PublicationTitleAbbrev CW
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190025
Score 1.851389
Snippet Early fire forest detection is crucial for fast and effective intervention. Many research have been done on this subject starting by sensor based systems and...
SourceID ieee
SourceType Publisher
StartPage 500
SubjectTerms Computer vision
Deep learning
Fire detection
Forest Fire detection
YOLOv6
Title YOLOv6 for Fire Images detection
URI https://ieeexplore.ieee.org/document/10337537
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED3RTkzlo4hveWBNqeM4tueKqiBoGYooU5VzDgkhUgQJA7-ec9oUhITEFmVJ_Hnv2e_dAZzFNkXzKH3kTGaZoMgkcjY3kbF9r6THmFQwCt-M09FdcjXTs5VZvfbCEFEtPqNeeKzv8vOFr8JRGa9wpRhemxa0jHFLs9b6QIXnUgjgjTGm784H96FkXtBvxSGNaT_4pX-UUKkjyLAD4-bbS-HIc68qsec_f6Vl_PfPbUH326wnbtdhaBs2qNiBTlOtQawW7y6Ih8n15CMVjFLFkDc6cfnCe8m7yKms5VhFF6bDi-lgFK3qI0RPUroy8lpbxjeWVOyZRpDPDVFIUaey1MWZRKOQ6QxmuUZi3CUzSZIwUyl6iaT2oF0sCtoHwRRZMzDhMVOK-WFiNbmEjEaLOk5QH0A3NHj-usyAMW_aevjH-yPYDJ1ei97UMbTLt4pOOHiXeFoP2hc6M5YW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGWAqH0V844E1pY7j2Jkrqhb6wVBEmaqcc0gIkSJIGfj1nNOmICQktihLYp3te89-7w7gIrQxmkfpgsSklgmKjILEZiYwtuWUdBiS8kbhwTDu3kXXEz1ZmtVLLwwRleIzavrH8i4_m7m5PyrjFa4Uw2uzDhuaaYVZ2LVWRyo8m3wKr6wxreSyfe-b5nkFV-gLmba8Y_pHE5Uyh3TqMKy-vpCOPDfnBTbd56_CjP_-vW1ofNv1xO0qEe3AGuW7UK_6NYjl8t0D8TDqjz5iwThVdHirE70X3k3eRUZFKcjKGzDuXI3b3WDZISF4kjIpAqe1ZYRjSYWOiQS5zBD5InUqjZMwlWgUMqHBNNNIjLxkKkkSpipGJ5HUPtTyWU4HIJgka4YmHDWlmCFGVlMSkdFoUYcR6kNo-AFPXxc1MKbVWI_-eH8Om93xoD_t94Y3x7DlA1BK4NQJ1Iq3OZ1yKi_wrAzgF1VOmWc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Conference+on+Cyberworlds.+Online%29&rft.atitle=YOLOv6+for+Fire+Images+detection&rft.au=Jabnouni%2C+Hedi&rft.au=Arfaoui%2C+Imen&rft.au=Cherni%2C+Mohamed+Ali&rft.au=Bouchouicha%2C+Moez&rft.date=2023-10-03&rft.pub=IEEE&rft.eissn=2642-3596&rft.spage=500&rft.epage=501&rft_id=info:doi/10.1109%2FCW58918.2023.00086&rft.externalDocID=10337537