Efficient Machine Learning Models for the Accurate Prediction of Diabetes
Aim: Identifying and predicting the diabetes for a patient using Random Forest (RF), Naive Bayes (NB), and Multi- Layer Perceptron (MLP). Methods and Material: The SVM algorithm, known as group 1, is combined in the project to improve diabetes prediction with three other algorithms: Multi-Layer Perc...
Saved in:
Published in | 2024 International Conference on Science Technology Engineering and Management (ICSTEM) pp. 1 - 5 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.04.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICSTEM61137.2024.10560652 |
Cover
Abstract | Aim: Identifying and predicting the diabetes for a patient using Random Forest (RF), Naive Bayes (NB), and Multi- Layer Perceptron (MLP). Methods and Material: The SVM algorithm, known as group 1, is combined in the project to improve diabetes prediction with three other algorithms: Multi-Layer Perceptron, Random Forest and Naive Bayes, grouped as 2, 3, and 4. This multi-algorithmic framework seeks to improve efficiency and accuracy by utilising the robust classification of SVM, the ensemble learning of RF, the pattern capture of Multilayer Perceptron, and the probabilistic approach of NB. This comprehensive solution goes beyond the limitations of the conventional SVM-based model. Result: With the SVM, MLP, RF, and NB algorithms, our machine learning models showed noteworthy accuracy and promising results in the prediction of diabetes. RF improved accuracy by 76%, Naive Bayes by 78%, and MLP by 82%, according to the data. Conclusion: In diabetes prediction, combining SVM with RF, MLP, and NB shows a thorough approach, showing encouraging results and proving that MLP is effective for early diagnosis and treatment, outperforming conventional SVM-based models with improved accuracy. |
---|---|
AbstractList | Aim: Identifying and predicting the diabetes for a patient using Random Forest (RF), Naive Bayes (NB), and Multi- Layer Perceptron (MLP). Methods and Material: The SVM algorithm, known as group 1, is combined in the project to improve diabetes prediction with three other algorithms: Multi-Layer Perceptron, Random Forest and Naive Bayes, grouped as 2, 3, and 4. This multi-algorithmic framework seeks to improve efficiency and accuracy by utilising the robust classification of SVM, the ensemble learning of RF, the pattern capture of Multilayer Perceptron, and the probabilistic approach of NB. This comprehensive solution goes beyond the limitations of the conventional SVM-based model. Result: With the SVM, MLP, RF, and NB algorithms, our machine learning models showed noteworthy accuracy and promising results in the prediction of diabetes. RF improved accuracy by 76%, Naive Bayes by 78%, and MLP by 82%, according to the data. Conclusion: In diabetes prediction, combining SVM with RF, MLP, and NB shows a thorough approach, showing encouraging results and proving that MLP is effective for early diagnosis and treatment, outperforming conventional SVM-based models with improved accuracy. |
Author | Meenakshidevi, P. Logesh, T R. Navayugan, G. Kannan, M. Sugesh |
Author_xml | – sequence: 1 givenname: P. surname: Meenakshidevi fullname: Meenakshidevi, P. email: drpmeenakshidevi@gmail.com organization: Professor/IT, KSR College of Engineering,Tiruchengode,637215 – sequence: 2 givenname: T R. surname: Logesh fullname: Logesh, T R. email: nithinlogesh@gmail.com organization: Final year/IT, KSR Institute for Engineering and Technology,Tiruchengode,637215 – sequence: 3 givenname: G. surname: Navayugan fullname: Navayugan, G. email: navayugan02@gmail.com organization: Final year/IT, KSR Institute for Engineering and Technology,Tiruchengode,637215 – sequence: 4 givenname: M. Sugesh surname: Kannan fullname: Kannan, M. Sugesh email: sugeshk88@gmail.com organization: Final year/IT, KSR Institute for Engineering and Technology,Tiruchengode,637215 |
BookMark | eNo1j71OwzAYAI0EA5S-AYN5gAR_dmzXYxUCREoEEmWu_POZWioOcsLA24MEnW473V2R8zxlJOQWWA3AzF3fvu66UQEIXXPGmxqYVExJfkbWRpuNkExoZUBckr6LMfmEeaGj9YeUkQ5oS075nY5TwONM41TockC69f6r2AXpS8GQ_JKmTKdI75N1uOB8TS6iPc64_ueKvD10u_apGp4f-3Y7VAnALJXbaM8lItPRhyZ6DhGNUTEY5pzCJrDAfgtjUKC4liiDVwadQ-k9GAxiRW7-vAkR958lfdjyvT8dih8IFUyz |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSTEM61137.2024.10560652 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350376913 |
EndPage | 5 |
ExternalDocumentID | 10560652 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-b87c25ee07fcd4fc21fe996fd90bb6e4d0d0983fd616275e5dc69ebbe5cc19ed3 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 03 05:40:33 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-b87c25ee07fcd4fc21fe996fd90bb6e4d0d0983fd616275e5dc69ebbe5cc19ed3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10560652 |
PublicationCentury | 2000 |
PublicationDate | 2024-April-26 |
PublicationDateYYYYMMDD | 2024-04-26 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | 2024 International Conference on Science Technology Engineering and Management (ICSTEM) |
PublicationTitleAbbrev | ICSTEM |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9097103 |
Snippet | Aim: Identifying and predicting the diabetes for a patient using Random Forest (RF), Naive Bayes (NB), and Multi- Layer Perceptron (MLP). Methods and Material:... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Decision tree Diabetes Diabetes prediction Machine learning Machine learning algorithms Multi-layer perceptron Naive bayes Prediction algorithms Predictive models Radio frequency Random Forest Support vector machine Support vector machines |
Title | Efficient Machine Learning Models for the Accurate Prediction of Diabetes |
URI | https://ieeexplore.ieee.org/document/10560652 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7ag3hSseKbCF6z3ewm2c1RSksrtAi20FtpJhMRpRW7e_HXm6RbRUHwFkJezITMTGbmG0JuF8qWThnFNIBmQmaWlQtImRTGOW5FlrnwDzkaq8FU3M_krElWj7kwiBiDzzAJzejLtyuow1dZJ1SJ9yLTv7i7_p5tkrX2yE2Dm9kZdh8nvZHiPC-84ZeJZDv-R-WUKDj6B2S83XITL_KS1JVJ4OMXGuO_z3RI2t85evThS_ockR1cHpNhLyJC-Bl0FKMkkTYAqk80VD17XVOvpFKv9NE7gDrARPhFgq8m8IeuHG0iZNZtMu33Jt0Ba4olsGfOdcVMWUAmEdPCgRUOMu7Q2zLO6tQYhcKmNtVl7qziAZgYpQWl0RiUAFyjzU9Ia7la4imhArUqcpGDgVI4lAsLaLwdBqnIrVDyjLQDHeZvGzyM-ZYE53_0X5D9wI7gg8nUJWlV7zVeeVFemevIwk8AXKC9 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA8yQX1SceK3EXxt17RJ2jzK2Nh0HYIb7G0sl4uIYxPXvvjXm3SdoiD4FgKXhDvIff-OkNuZNJmVWgYKQAVcxCbIZhAFgmtrmeFxbH0cMh_K3pjfT8SkblavemEQsSo-w9Avq1y-WULpQ2UtPyXeqUz3424L51Zk63atHXJTI2e2-u2nUSeXjCWpc_1iHm4ofsxOqVRHd58MN5euK0Zew7LQIXz8wmP896sOSPO7S48-fumfQ7KFiyPS71SYEI6C5lWdJNIaQvWZ-rln8xV1Zip1Zh-9Ayg9UIQ7xGdrvITo0tK6RmbVJONuZ9TuBfW4hOCFMVUEOkshFohRasFwCzGz6LwZa1SktURuIhOpLLFGMg9NjMKAVKg1CgCm0CTHpLFYLvCEUI5KpglPQEPGLYqZAdTOE4OIJ4ZLcUqang_TtzUixnTDgrM_9q_Jbm-UD6aD_vDhnOx50fiMTCwvSKN4L_HSKfZCX1Xi_ASlnqQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Science+Technology+Engineering+and+Management+%28ICSTEM%29&rft.atitle=Efficient+Machine+Learning+Models+for+the+Accurate+Prediction+of+Diabetes&rft.au=Meenakshidevi%2C+P.&rft.au=Logesh%2C+T+R.&rft.au=Navayugan%2C+G.&rft.au=Kannan%2C+M.+Sugesh&rft.date=2024-04-26&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICSTEM61137.2024.10560652&rft.externalDocID=10560652 |