Efficient Machine Learning Models for the Accurate Prediction of Diabetes

Aim: Identifying and predicting the diabetes for a patient using Random Forest (RF), Naive Bayes (NB), and Multi- Layer Perceptron (MLP). Methods and Material: The SVM algorithm, known as group 1, is combined in the project to improve diabetes prediction with three other algorithms: Multi-Layer Perc...

Full description

Saved in:
Bibliographic Details
Published in2024 International Conference on Science Technology Engineering and Management (ICSTEM) pp. 1 - 5
Main Authors Meenakshidevi, P., Logesh, T R., Navayugan, G., Kannan, M. Sugesh
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.04.2024
Subjects
Online AccessGet full text
DOI10.1109/ICSTEM61137.2024.10560652

Cover

Abstract Aim: Identifying and predicting the diabetes for a patient using Random Forest (RF), Naive Bayes (NB), and Multi- Layer Perceptron (MLP). Methods and Material: The SVM algorithm, known as group 1, is combined in the project to improve diabetes prediction with three other algorithms: Multi-Layer Perceptron, Random Forest and Naive Bayes, grouped as 2, 3, and 4. This multi-algorithmic framework seeks to improve efficiency and accuracy by utilising the robust classification of SVM, the ensemble learning of RF, the pattern capture of Multilayer Perceptron, and the probabilistic approach of NB. This comprehensive solution goes beyond the limitations of the conventional SVM-based model. Result: With the SVM, MLP, RF, and NB algorithms, our machine learning models showed noteworthy accuracy and promising results in the prediction of diabetes. RF improved accuracy by 76%, Naive Bayes by 78%, and MLP by 82%, according to the data. Conclusion: In diabetes prediction, combining SVM with RF, MLP, and NB shows a thorough approach, showing encouraging results and proving that MLP is effective for early diagnosis and treatment, outperforming conventional SVM-based models with improved accuracy.
AbstractList Aim: Identifying and predicting the diabetes for a patient using Random Forest (RF), Naive Bayes (NB), and Multi- Layer Perceptron (MLP). Methods and Material: The SVM algorithm, known as group 1, is combined in the project to improve diabetes prediction with three other algorithms: Multi-Layer Perceptron, Random Forest and Naive Bayes, grouped as 2, 3, and 4. This multi-algorithmic framework seeks to improve efficiency and accuracy by utilising the robust classification of SVM, the ensemble learning of RF, the pattern capture of Multilayer Perceptron, and the probabilistic approach of NB. This comprehensive solution goes beyond the limitations of the conventional SVM-based model. Result: With the SVM, MLP, RF, and NB algorithms, our machine learning models showed noteworthy accuracy and promising results in the prediction of diabetes. RF improved accuracy by 76%, Naive Bayes by 78%, and MLP by 82%, according to the data. Conclusion: In diabetes prediction, combining SVM with RF, MLP, and NB shows a thorough approach, showing encouraging results and proving that MLP is effective for early diagnosis and treatment, outperforming conventional SVM-based models with improved accuracy.
Author Meenakshidevi, P.
Logesh, T R.
Navayugan, G.
Kannan, M. Sugesh
Author_xml – sequence: 1
  givenname: P.
  surname: Meenakshidevi
  fullname: Meenakshidevi, P.
  email: drpmeenakshidevi@gmail.com
  organization: Professor/IT, KSR College of Engineering,Tiruchengode,637215
– sequence: 2
  givenname: T R.
  surname: Logesh
  fullname: Logesh, T R.
  email: nithinlogesh@gmail.com
  organization: Final year/IT, KSR Institute for Engineering and Technology,Tiruchengode,637215
– sequence: 3
  givenname: G.
  surname: Navayugan
  fullname: Navayugan, G.
  email: navayugan02@gmail.com
  organization: Final year/IT, KSR Institute for Engineering and Technology,Tiruchengode,637215
– sequence: 4
  givenname: M. Sugesh
  surname: Kannan
  fullname: Kannan, M. Sugesh
  email: sugeshk88@gmail.com
  organization: Final year/IT, KSR Institute for Engineering and Technology,Tiruchengode,637215
BookMark eNo1j71OwzAYAI0EA5S-AYN5gAR_dmzXYxUCREoEEmWu_POZWioOcsLA24MEnW473V2R8zxlJOQWWA3AzF3fvu66UQEIXXPGmxqYVExJfkbWRpuNkExoZUBckr6LMfmEeaGj9YeUkQ5oS075nY5TwONM41TockC69f6r2AXpS8GQ_JKmTKdI75N1uOB8TS6iPc64_ueKvD10u_apGp4f-3Y7VAnALJXbaM8lItPRhyZ6DhGNUTEY5pzCJrDAfgtjUKC4liiDVwadQ-k9GAxiRW7-vAkR958lfdjyvT8dih8IFUyz
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSTEM61137.2024.10560652
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350376913
EndPage 5
ExternalDocumentID 10560652
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-b87c25ee07fcd4fc21fe996fd90bb6e4d0d0983fd616275e5dc69ebbe5cc19ed3
IEDL.DBID RIE
IngestDate Wed Jul 03 05:40:33 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-b87c25ee07fcd4fc21fe996fd90bb6e4d0d0983fd616275e5dc69ebbe5cc19ed3
PageCount 5
ParticipantIDs ieee_primary_10560652
PublicationCentury 2000
PublicationDate 2024-April-26
PublicationDateYYYYMMDD 2024-04-26
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-26
  day: 26
PublicationDecade 2020
PublicationTitle 2024 International Conference on Science Technology Engineering and Management (ICSTEM)
PublicationTitleAbbrev ICSTEM
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9097103
Snippet Aim: Identifying and predicting the diabetes for a patient using Random Forest (RF), Naive Bayes (NB), and Multi- Layer Perceptron (MLP). Methods and Material:...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Decision tree
Diabetes
Diabetes prediction
Machine learning
Machine learning algorithms
Multi-layer perceptron
Naive bayes
Prediction algorithms
Predictive models
Radio frequency
Random Forest
Support vector machine
Support vector machines
Title Efficient Machine Learning Models for the Accurate Prediction of Diabetes
URI https://ieeexplore.ieee.org/document/10560652
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7ag3hSseKbCF6z3ewm2c1RSksrtAi20FtpJhMRpRW7e_HXm6RbRUHwFkJezITMTGbmG0JuF8qWThnFNIBmQmaWlQtImRTGOW5FlrnwDzkaq8FU3M_krElWj7kwiBiDzzAJzejLtyuow1dZJ1SJ9yLTv7i7_p5tkrX2yE2Dm9kZdh8nvZHiPC-84ZeJZDv-R-WUKDj6B2S83XITL_KS1JVJ4OMXGuO_z3RI2t85evThS_ockR1cHpNhLyJC-Bl0FKMkkTYAqk80VD17XVOvpFKv9NE7gDrARPhFgq8m8IeuHG0iZNZtMu33Jt0Ba4olsGfOdcVMWUAmEdPCgRUOMu7Q2zLO6tQYhcKmNtVl7qziAZgYpQWl0RiUAFyjzU9Ia7la4imhArUqcpGDgVI4lAsLaLwdBqnIrVDyjLQDHeZvGzyM-ZYE53_0X5D9wI7gg8nUJWlV7zVeeVFemevIwk8AXKC9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA8yQX1SceK3EXxt17RJ2jzK2Nh0HYIb7G0sl4uIYxPXvvjXm3SdoiD4FgKXhDvIff-OkNuZNJmVWgYKQAVcxCbIZhAFgmtrmeFxbH0cMh_K3pjfT8SkblavemEQsSo-w9Avq1y-WULpQ2UtPyXeqUz3424L51Zk63atHXJTI2e2-u2nUSeXjCWpc_1iHm4ofsxOqVRHd58MN5euK0Zew7LQIXz8wmP896sOSPO7S48-fumfQ7KFiyPS71SYEI6C5lWdJNIaQvWZ-rln8xV1Zip1Zh-9Ayg9UIQ7xGdrvITo0tK6RmbVJONuZ9TuBfW4hOCFMVUEOkshFohRasFwCzGz6LwZa1SktURuIhOpLLFGMg9NjMKAVKg1CgCm0CTHpLFYLvCEUI5KpglPQEPGLYqZAdTOE4OIJ4ZLcUqang_TtzUixnTDgrM_9q_Jbm-UD6aD_vDhnOx50fiMTCwvSKN4L_HSKfZCX1Xi_ASlnqQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Science+Technology+Engineering+and+Management+%28ICSTEM%29&rft.atitle=Efficient+Machine+Learning+Models+for+the+Accurate+Prediction+of+Diabetes&rft.au=Meenakshidevi%2C+P.&rft.au=Logesh%2C+T+R.&rft.au=Navayugan%2C+G.&rft.au=Kannan%2C+M.+Sugesh&rft.date=2024-04-26&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICSTEM61137.2024.10560652&rft.externalDocID=10560652