Design Strategy for Identification and Tracking of Video Objects Over Crowded Video Scenes using a Novel Feature-Learning Algorithm

The idea of tracking video objects has evolved to facilitate the area of surveillance systems. It is mainly observed that the existing video tracking models are more inclined towards improving the accuracy where the consideration of a more significant proportion of mobile objects dynamics in motion...

Full description

Saved in:
Bibliographic Details
Published in2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC) pp. 1 - 8
Main Authors Divyaprabha, S, Guruprasad
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.12.2023
Subjects
Online AccessGet full text
DOI10.1109/ICMNWC60182.2023.10435734

Cover

Abstract The idea of tracking video objects has evolved to facilitate the area of surveillance systems. It is mainly observed that the existing video tracking models are more inclined towards improving the accuracy where the consideration of a more significant proportion of mobile objects dynamics in motion over the crowded video frame sequence is mainly overlooked, which is essential to study a specific movement pattern of mobile objects appearing in the video frame sequence. Moreover, research solutions mostly need more effectiveness when it comes to the cost of computation. The study thereby introduces a unique, simplified video tracking strategy capable of assessing a specific pattern of mobile objects movement over complex and crowded video scenes. The research findings show that, unlike the existing system, the proposed tracking model attains approximately 11.4523% improvement over the precision score and 0.882202 % over the F1 measure while reducing the feature computation time to 0.128124 sec.
AbstractList The idea of tracking video objects has evolved to facilitate the area of surveillance systems. It is mainly observed that the existing video tracking models are more inclined towards improving the accuracy where the consideration of a more significant proportion of mobile objects dynamics in motion over the crowded video frame sequence is mainly overlooked, which is essential to study a specific movement pattern of mobile objects appearing in the video frame sequence. Moreover, research solutions mostly need more effectiveness when it comes to the cost of computation. The study thereby introduces a unique, simplified video tracking strategy capable of assessing a specific pattern of mobile objects movement over complex and crowded video scenes. The research findings show that, unlike the existing system, the proposed tracking model attains approximately 11.4523% improvement over the precision score and 0.882202 % over the F1 measure while reducing the feature computation time to 0.128124 sec.
Author Divyaprabha
S, Guruprasad
Author_xml – sequence: 1
  surname: Divyaprabha
  fullname: Divyaprabha
  email: dpssit@gmail.com
  organization: Sri Sriddhartha Institute of Technology,Dept. of Electronics and Communication Engg,Tumkur,India
– sequence: 2
  givenname: Guruprasad
  surname: S
  fullname: S, Guruprasad
  email: guruprasads@ssit.edu.in
  organization: Sri Sriddhartha Institute of Technology,Dept. of Biomedical Engg,Tumkur,India
BookMark eNo1kLFOwzAURY0EA5T-AYP5gBQ_O4njsQoUKpV2aIGxspPnYGht5LhFnflxVFGmMxydO9wrcu6DR0JugY0AmLqb1s_zt7pkUPERZ1yMgOWikCI_I0MlVSUKJkAyzi_Jzz32rvN0maJO2B2oDZFOW_TJWdfo5IKn2rd0FXXz6XxHg6WvrsVAF-YDm9TTxR4jrWP4brE9qWWDHnu664-BpvOwxw2doE67iNkMdfRHMd50Ibr0vr0mF1ZvehyeOCAvk4dV_ZTNFo_TejzLHIBKmZGKYSWBCVMyw7SWpcmlBCOlEoW1AFY0Kte5Ao4tl0VTIRqDEqoyRyvFgNz87TpEXH9Ft9XxsP7_RvwCHKxgdA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMNWC60182.2023.10435734
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library (LUT)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350317022
EndPage 8
ExternalDocumentID 10435734
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-b790e87103b60b0aa76b4771b77935ff11f3c94a4912ed275c8eebbe71864ef73
IEDL.DBID RIE
IngestDate Wed May 01 11:58:47 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-b790e87103b60b0aa76b4771b77935ff11f3c94a4912ed275c8eebbe71864ef73
PageCount 8
ParticipantIDs ieee_primary_10435734
PublicationCentury 2000
PublicationDate 2023-Dec.-4
PublicationDateYYYYMMDD 2023-12-04
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC)
PublicationTitleAbbrev ICMNWC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8559394
Snippet The idea of tracking video objects has evolved to facilitate the area of surveillance systems. It is mainly observed that the existing video tracking models...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Computer Vision
Costs
Feature extraction
Learning
Mobile Object Dynamics
Surveillance
Time measurement
Tracking
Video
Video tracking
Wireless communication
Title Design Strategy for Identification and Tracking of Video Objects Over Crowded Video Scenes using a Novel Feature-Learning Algorithm
URI https://ieeexplore.ieee.org/document/10435734
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfPMFrZ9OkTXuU6ZjCNkGnu40meZnDucpsBb36j5t0naIgeCtpoSFp-r3v5X1fCDnRkZBKpNpLjDIeD51YmSlHXKlvtM8Mp07g3O1FnQG_GobDSqxeamEQsSw-w6a7LPfydaYKlyqzK9yCu2C8RmoijhZirVVyXPlmnl62ur37lmUYsVNYBay5fP7HySklcLTXSW_5ykW9yGOzyGVTvf9yY_x3nzZI41ujB9df6LNJVnC2RT7Oy4IMqDxn38CGpLDQ4poqOQfpTINFKOVy5JAZuJtozKAvXULmBfr204aW5eYadXXrRrn_IbgK-TGk0MtecQoudCzm6FX-rGM4m46z-SR_eGqQQfvittXxqmMWvAmlSe5JkfhoeZPPZORLP01FJLkQVAq7dkNjKDVMJTzlCQ1QByJUMaKUaFEt4mgE2yb1WTbDHQIhi2IVGaoDYym38uNU2hAgYcZt9-o42CUNN4Kj54WTxmg5eHt_tO-TNTeRZfkIPyD1fF7goQ0CcnlUTv4n8giznA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1-gPqk4sRvr-BrZ9OkTfso0zF1q4Kfb6NJbuZQV5mdoK_-cZOuUxQE30pLSUmT3HtuzjkhZF9HQiqRaS8xyng8dGJlphxwpb7RPjOcOoFzJ41a1_z0LryrxOqlFgYRS_IZ1t1luZevczVypTI7w21wF4xPk9mQcx6O5VpzZK9yzjw4aXTS24bFGLHTWAWsPnnjx9kpZehoLpJ00uiYMfJQHxWyrt5_-TH--6uWSO1bpQcXX_FnmUzhYIV8HJWUDKhcZ9_AJqUwVuOaqjwH2UCDjVHKVckhN3DT15jDuXQlmRc4t4MbGhada9TVo0vlVkRwHPkeZJDmr_gILnkcDdGrHFp7cPjYy4f94v6pRq6bx1eNllcdtOD1KU0KT4rER4ucfCYjX_pZJiLJhaBS2NkbGkOpYSrhGU9ogDoQoYoRpUQb1yKORrBVMjPIB7hGIGRRrCJDdWAs6FZ-nEmbBCTMuA1fHQfrpOZ6sPs89tLoTjpv44_7u2S-ddVpd9sn6dkmWXA_tSST8C0yUwxHuG1TgkLulAPhE4Uetuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+International+Conference+on+Mobile+Networks+and+Wireless+Communications+%28ICMNWC%29&rft.atitle=Design+Strategy+for+Identification+and+Tracking+of+Video+Objects+Over+Crowded+Video+Scenes+using+a+Novel+Feature-Learning+Algorithm&rft.au=Divyaprabha&rft.au=S%2C+Guruprasad&rft.date=2023-12-04&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FICMNWC60182.2023.10435734&rft.externalDocID=10435734