Parametric Model for Estimating Pollutant Emissions in M1 Otto Cycle Vehicles with OBD-II

This article presents a proposed parametric model for estimating pollutant gas emissions in vehicles with Otto cycle engines. This model is based on the acquisition of on-board diagnostic data and machine learning algorithms. The data are collected through portable devices during Real Driving Emissi...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM) pp. 1 - 6
Main Authors Rivera, Nestor, Jimenez, Edisson, Cardenas, Joel
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.10.2023
Subjects
Online AccessGet full text
DOI10.1109/ETCM58927.2023.10308992

Cover

Abstract This article presents a proposed parametric model for estimating pollutant gas emissions in vehicles with Otto cycle engines. This model is based on the acquisition of on-board diagnostic data and machine learning algorithms. The data are collected through portable devices during Real Driving Emissions (RDE) road tests, and subsequent analysis allows for the training and validation of neural networks to calculate emission factors of various pollutants (CO, CO 2 , THC, NOx). In addition, classification learning is considered to assess the behavior of each pollutant in each gear. The model is trained based on three vehicles that followed three different routes, complying with RDE conditions. The obtained emission factors were compared with the IVE model and values close to the latter were found. This model provides crucial information for creating an emissions inventory that reflects the real conditions of the vehicle fleet in the city of Cuenca.
AbstractList This article presents a proposed parametric model for estimating pollutant gas emissions in vehicles with Otto cycle engines. This model is based on the acquisition of on-board diagnostic data and machine learning algorithms. The data are collected through portable devices during Real Driving Emissions (RDE) road tests, and subsequent analysis allows for the training and validation of neural networks to calculate emission factors of various pollutants (CO, CO 2 , THC, NOx). In addition, classification learning is considered to assess the behavior of each pollutant in each gear. The model is trained based on three vehicles that followed three different routes, complying with RDE conditions. The obtained emission factors were compared with the IVE model and values close to the latter were found. This model provides crucial information for creating an emissions inventory that reflects the real conditions of the vehicle fleet in the city of Cuenca.
Author Jimenez, Edisson
Rivera, Nestor
Cardenas, Joel
Author_xml – sequence: 1
  givenname: Nestor
  surname: Rivera
  fullname: Rivera, Nestor
  email: nrivera@ups.edu.ec
  organization: Universidad Politecnica Salesiana,Grupo de Investigacion de Ingenieria del Transporte,Cuenca,Ecuador
– sequence: 2
  givenname: Edisson
  surname: Jimenez
  fullname: Jimenez, Edisson
  email: ejimenezl2@est.ups.edu.ec
  organization: Universidad Politecnica Salesiana,Grupo de Investigacion de Ingenieria del Transporte,Cuenca,Ecuador
– sequence: 3
  givenname: Joel
  surname: Cardenas
  fullname: Cardenas, Joel
  email: jcardenaso2@est.ups.edu.ec
  organization: Universidad Politecnica Salesiana,Grupo de Investigacion de Ingenieria del Transporte,Cuenca,Ecuador
BookMark eNo1j8tKxDAARSPoQsf5A8H8QGuebbLUWnVgSmehgqshaRIn0CbSRGT-3oq6Omd1OfcCnIYYLADXGJUYI3nTPjcdF5LUJUGElhhRJKQkJ2AtaykoR5QKQsk5eNupWU02z36AXTR2hC7OsE3ZTyr78A53cRw_swoZtpNPyceQoA-ww7DPOcLmOIwWvtqDX5jgl88H2N_dF5vNJThzakx2_ccVeHlYsp6Kbf-4aW63hcdY5kJzx7ishCaVwM4I9WNSC8OcRorUFTfYMMMRIbzSFUUWS6w5IwNjanCUrsDV76631u4_5iV8Pu7_H9NvYJtPfQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ETCM58927.2023.10308992
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350338232
EndPage 6
ExternalDocumentID 10308992
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-b5f45968b2681fd8a8b269b8d4fb0a2765d1d4d502256b630e191b542c44acf33
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:07 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-b5f45968b2681fd8a8b269b8d4fb0a2765d1d4d502256b630e191b542c44acf33
PageCount 6
ParticipantIDs ieee_primary_10308992
PublicationCentury 2000
PublicationDate 2023-Oct.-10
PublicationDateYYYYMMDD 2023-10-10
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM)
PublicationTitleAbbrev ETCM
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8501087
Snippet This article presents a proposed parametric model for estimating pollutant gas emissions in vehicles with Otto cycle engines. This model is based on the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Data models
Estimation
Machine learning algorithms
Neural Networks
OBD
Parametric Model
Parametric statistics
Temperature
Training
Urban areas
Vehicle Emissions
Title Parametric Model for Estimating Pollutant Emissions in M1 Otto Cycle Vehicles with OBD-II
URI https://ieeexplore.ieee.org/document/10308992
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagExMginjLA6vTOPEjWSmtWqQ-BorKVPkJFShFkA7w6_G5LQgkJDYripTEF_u7O393H0KXqQbHmGlirRGEidyGNWcosY5RKU1hbBTtGwxFb8Jupny6LlaPtTDOuUg-cwkM41m-XZglpMpaIIkV4oOw427LQqyKtdacLZqWrc5te8CLMpMJaIInm7t_6KZE2OjuouHmgSu2yFOyrHViPn71Yvz3G-2h5neFHh5_Yc8-2nLVAbofK6BaQc99DBpnzzh4pLgTFjG4pdUDHoOuMcgG404wL-TJ3vC8wgOKR3W9wO338A_hO_cYqXIYUrR4dHVN-v0mmnTDd_fIWjqBzCkta6K5Z7wUhc5EQb0tFIxKXVjmdaoyKbilllkeEJwLLfLUhbhNc5YZxpTxeX6IGtWickcIW2-FUdQwF5C8zLwS0qdWuBDcei5VfoyaMC-zl1V3jNlmSk7-uH6KdsA8sP_T9Aw16telOw_AXuuLaNBP_sKjYw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVQGWACRBHfeGBNGie2k6yUVi00bYcWlanyJ1SgFEE6wK_H57YgkJDYLCtSHF-cd3d5dw-hy0iCY0xloLXiAeWJdmdOkUAbStJUZUp70b6izztjejNhk1Wxuq-FMcZ48pkJYej_5eu5WkCqrAGSWC4-cF_cTUYpZctyrRVri0R5ozVqFizL4zQEVfBwff0P5RQPHO0d1F_fcskXeQoXlQzVx69ujP9e0y6qf9fo4eEX-uyhDVPuo_uhALIVdN3HoHL2jJ1PilvuGINjWj7gISgbg3AwbjkDQ6bsDc9KXBA8qKo5br67twjfmUdPlsOQpMWDq-ug262jcds9dydYiScEM0LyKpDMUpbzTMY8I1ZnAka5zDS1MhJxypkmmmrmMJxxyZPIuMhNMhorSoWySXKAauW8NIcIa6u5EkRR47A8j63gqY00Ny68tSwVyRGqw75MX5b9MabrLTn-Y_4CbXVGRW_a6_ZvT9A2mArQgESnqFa9LsyZg_lKnnvjfgK9_6aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+Seventh+Ecuador+Technical+Chapters+Meeting+%28ECTM%29&rft.atitle=Parametric+Model+for+Estimating+Pollutant+Emissions+in+M1+Otto+Cycle+Vehicles+with+OBD-II&rft.au=Rivera%2C+Nestor&rft.au=Jimenez%2C+Edisson&rft.au=Cardenas%2C+Joel&rft.date=2023-10-10&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FETCM58927.2023.10308992&rft.externalDocID=10308992