Parametric Model for Estimating Pollutant Emissions in M1 Otto Cycle Vehicles with OBD-II
This article presents a proposed parametric model for estimating pollutant gas emissions in vehicles with Otto cycle engines. This model is based on the acquisition of on-board diagnostic data and machine learning algorithms. The data are collected through portable devices during Real Driving Emissi...
Saved in:
| Published in | 2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM) pp. 1 - 6 |
|---|---|
| Main Authors | , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
10.10.2023
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/ETCM58927.2023.10308992 |
Cover
| Abstract | This article presents a proposed parametric model for estimating pollutant gas emissions in vehicles with Otto cycle engines. This model is based on the acquisition of on-board diagnostic data and machine learning algorithms. The data are collected through portable devices during Real Driving Emissions (RDE) road tests, and subsequent analysis allows for the training and validation of neural networks to calculate emission factors of various pollutants (CO, CO 2 , THC, NOx). In addition, classification learning is considered to assess the behavior of each pollutant in each gear. The model is trained based on three vehicles that followed three different routes, complying with RDE conditions. The obtained emission factors were compared with the IVE model and values close to the latter were found. This model provides crucial information for creating an emissions inventory that reflects the real conditions of the vehicle fleet in the city of Cuenca. |
|---|---|
| AbstractList | This article presents a proposed parametric model for estimating pollutant gas emissions in vehicles with Otto cycle engines. This model is based on the acquisition of on-board diagnostic data and machine learning algorithms. The data are collected through portable devices during Real Driving Emissions (RDE) road tests, and subsequent analysis allows for the training and validation of neural networks to calculate emission factors of various pollutants (CO, CO 2 , THC, NOx). In addition, classification learning is considered to assess the behavior of each pollutant in each gear. The model is trained based on three vehicles that followed three different routes, complying with RDE conditions. The obtained emission factors were compared with the IVE model and values close to the latter were found. This model provides crucial information for creating an emissions inventory that reflects the real conditions of the vehicle fleet in the city of Cuenca. |
| Author | Jimenez, Edisson Rivera, Nestor Cardenas, Joel |
| Author_xml | – sequence: 1 givenname: Nestor surname: Rivera fullname: Rivera, Nestor email: nrivera@ups.edu.ec organization: Universidad Politecnica Salesiana,Grupo de Investigacion de Ingenieria del Transporte,Cuenca,Ecuador – sequence: 2 givenname: Edisson surname: Jimenez fullname: Jimenez, Edisson email: ejimenezl2@est.ups.edu.ec organization: Universidad Politecnica Salesiana,Grupo de Investigacion de Ingenieria del Transporte,Cuenca,Ecuador – sequence: 3 givenname: Joel surname: Cardenas fullname: Cardenas, Joel email: jcardenaso2@est.ups.edu.ec organization: Universidad Politecnica Salesiana,Grupo de Investigacion de Ingenieria del Transporte,Cuenca,Ecuador |
| BookMark | eNo1j8tKxDAARSPoQsf5A8H8QGuebbLUWnVgSmehgqshaRIn0CbSRGT-3oq6Omd1OfcCnIYYLADXGJUYI3nTPjcdF5LUJUGElhhRJKQkJ2AtaykoR5QKQsk5eNupWU02z36AXTR2hC7OsE3ZTyr78A53cRw_swoZtpNPyceQoA-ww7DPOcLmOIwWvtqDX5jgl88H2N_dF5vNJThzakx2_ccVeHlYsp6Kbf-4aW63hcdY5kJzx7ishCaVwM4I9WNSC8OcRorUFTfYMMMRIbzSFUUWS6w5IwNjanCUrsDV76631u4_5iV8Pu7_H9NvYJtPfQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ETCM58927.2023.10308992 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350338232 |
| EndPage | 6 |
| ExternalDocumentID | 10308992 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-b5f45968b2681fd8a8b269b8d4fb0a2765d1d4d502256b630e191b542c44acf33 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jan 10 09:28:07 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-b5f45968b2681fd8a8b269b8d4fb0a2765d1d4d502256b630e191b542c44acf33 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10308992 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Oct.-10 |
| PublicationDateYYYYMMDD | 2023-10-10 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | 2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM) |
| PublicationTitleAbbrev | ETCM |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8501087 |
| Snippet | This article presents a proposed parametric model for estimating pollutant gas emissions in vehicles with Otto cycle engines. This model is based on the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Data models Estimation Machine learning algorithms Neural Networks OBD Parametric Model Parametric statistics Temperature Training Urban areas Vehicle Emissions |
| Title | Parametric Model for Estimating Pollutant Emissions in M1 Otto Cycle Vehicles with OBD-II |
| URI | https://ieeexplore.ieee.org/document/10308992 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagExMginjLA6vTOPEjWSmtWqQ-BorKVPkJFShFkA7w6_G5LQgkJDYripTEF_u7O393H0KXqQbHmGlirRGEidyGNWcosY5RKU1hbBTtGwxFb8Jupny6LlaPtTDOuUg-cwkM41m-XZglpMpaIIkV4oOw427LQqyKtdacLZqWrc5te8CLMpMJaIInm7t_6KZE2OjuouHmgSu2yFOyrHViPn71Yvz3G-2h5neFHh5_Yc8-2nLVAbofK6BaQc99DBpnzzh4pLgTFjG4pdUDHoOuMcgG404wL-TJ3vC8wgOKR3W9wO338A_hO_cYqXIYUrR4dHVN-v0mmnTDd_fIWjqBzCkta6K5Z7wUhc5EQb0tFIxKXVjmdaoyKbilllkeEJwLLfLUhbhNc5YZxpTxeX6IGtWickcIW2-FUdQwF5C8zLwS0qdWuBDcei5VfoyaMC-zl1V3jNlmSk7-uH6KdsA8sP_T9Aw16telOw_AXuuLaNBP_sKjYw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVQGWACRBHfeGBNGie2k6yUVi00bYcWlanyJ1SgFEE6wK_H57YgkJDYLCtSHF-cd3d5dw-hy0iCY0xloLXiAeWJdmdOkUAbStJUZUp70b6izztjejNhk1Wxuq-FMcZ48pkJYej_5eu5WkCqrAGSWC4-cF_cTUYpZctyrRVri0R5ozVqFizL4zQEVfBwff0P5RQPHO0d1F_fcskXeQoXlQzVx69ujP9e0y6qf9fo4eEX-uyhDVPuo_uhALIVdN3HoHL2jJ1PilvuGINjWj7gISgbg3AwbjkDQ6bsDc9KXBA8qKo5br67twjfmUdPlsOQpMWDq-ug262jcds9dydYiScEM0LyKpDMUpbzTMY8I1ZnAka5zDS1MhJxypkmmmrmMJxxyZPIuMhNMhorSoWySXKAauW8NIcIa6u5EkRR47A8j63gqY00Ny68tSwVyRGqw75MX5b9MabrLTn-Y_4CbXVGRW_a6_ZvT9A2mArQgESnqFa9LsyZg_lKnnvjfgK9_6aw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+Seventh+Ecuador+Technical+Chapters+Meeting+%28ECTM%29&rft.atitle=Parametric+Model+for+Estimating+Pollutant+Emissions+in+M1+Otto+Cycle+Vehicles+with+OBD-II&rft.au=Rivera%2C+Nestor&rft.au=Jimenez%2C+Edisson&rft.au=Cardenas%2C+Joel&rft.date=2023-10-10&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FETCM58927.2023.10308992&rft.externalDocID=10308992 |