Semi-supervised Multivariate Time Series Classification by Subsample Correlation Prediction

This paper introduces a novel Semi-supervised learning (SSL) model based on subsample correlation (SSC) to address the challenge of Multivariate Time Series (MTS) classification tasks due to the scarcity of labeled data. The proposed method utilizes the coherence property of subsamples from identica...

Full description

Saved in:
Bibliographic Details
Published inProceedings - IEEE Symposium on Computers and Communications pp. 1177 - 1180
Main Author Su, Yun
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.07.2023
Subjects
Online AccessGet full text
ISSN2642-7389
DOI10.1109/ISCC58397.2023.10217939

Cover

Abstract This paper introduces a novel Semi-supervised learning (SSL) model based on subsample correlation (SSC) to address the challenge of Multivariate Time Series (MTS) classification tasks due to the scarcity of labeled data. The proposed method utilizes the coherence property of subsamples from identical subjects to devise the pretext task. For labeled time series, SSC conducts supervised classification under the supervision of annotated class labels. For unlabeled time series, SSC uses two subsampling techniques and considers subsamples from the same time series candidate as having a positive relationship and subsamples from different candidates as having a negative relationship. By jointly classifying labeled data and predicting the subsample correlation of unlabeled data, SSC captures useful representations of unlabeled time series. The experimental results on several Multivariate Time Series classification (TSC) datasets demonstrate the effectiveness of the proposed algorithm.
AbstractList This paper introduces a novel Semi-supervised learning (SSL) model based on subsample correlation (SSC) to address the challenge of Multivariate Time Series (MTS) classification tasks due to the scarcity of labeled data. The proposed method utilizes the coherence property of subsamples from identical subjects to devise the pretext task. For labeled time series, SSC conducts supervised classification under the supervision of annotated class labels. For unlabeled time series, SSC uses two subsampling techniques and considers subsamples from the same time series candidate as having a positive relationship and subsamples from different candidates as having a negative relationship. By jointly classifying labeled data and predicting the subsample correlation of unlabeled data, SSC captures useful representations of unlabeled time series. The experimental results on several Multivariate Time Series classification (TSC) datasets demonstrate the effectiveness of the proposed algorithm.
Author Su, Yun
Author_xml – sequence: 1
  givenname: Yun
  surname: Su
  fullname: Su, Yun
  email: suyun@imut.edu.cn
  organization: Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Radar Technology and Application,Hohhot,China
BookMark eNo1kM1Kw0AURkdRsK19A8F5gdT5yWTuLCX4U6gopK5clJvkBq4kbZlJC317kerqO3DgLL6puNrutiTEvVYLrVV4WFZl6cAGvzDK2IVWRvtgw4WYBx_AOmWVysFciokpcpN5C-FGTFP6VkqBM34ivioaOEuHPcUjJ2rl26Ef-YiRcSS55oFkRZEpybLHlLjjBkfebWV9ktWhTjjse5LlLkbqz-IjUsvNL96K6w77RPO_nYnP56d1-Zqt3l-W5eMqY63DmGGOtYPc1AAF5IidRd01OnitwUGbt6YFVzSOCgqorVdUqI4UdMbahmxtZ-Lu3GUi2uwjDxhPm_8z7A8DTFeA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCC58397.2023.10217939
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9798350300482
EISSN 2642-7389
EndPage 1180
ExternalDocumentID 10217939
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-a4ab5842b88684aaf3a1fc19711858d4d2d856c5e6e9a1370e60fe08f233ce3b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:20:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-a4ab5842b88684aaf3a1fc19711858d4d2d856c5e6e9a1370e60fe08f233ce3b3
PageCount 4
ParticipantIDs ieee_primary_10217939
PublicationCentury 2000
PublicationDate 2023-July-9
PublicationDateYYYYMMDD 2023-07-09
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-9
  day: 09
PublicationDecade 2020
PublicationTitle Proceedings - IEEE Symposium on Computers and Communications
PublicationTitleAbbrev ISCC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008527
Score 2.2276685
Snippet This paper introduces a novel Semi-supervised learning (SSL) model based on subsample correlation (SSC) to address the challenge of Multivariate Time Series...
SourceID ieee
SourceType Publisher
StartPage 1177
SubjectTerms Computers
Correlation
Feature extraction
Fluctuations
Multivariate Time Series Classification
Self-Supervised
Semi-Supervised Learning
Semisupervised learning
Subsample Correlation
Time series analysis
Training
Title Semi-supervised Multivariate Time Series Classification by Subsample Correlation Prediction
URI https://ieeexplore.ieee.org/document/10217939
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5uJ71M58RvcvDarm3SJjkXx_QwhDkYeBj5eAtD3IZrBf31Jmk7P0DwFgqlIUnfrzzP-yB0k0Vcac1FYJhObYJCTCA0KQJhY3tJQWitPMp3ko1n9H6ezhuyuufCAIAHn0Hohv4u36x15UplQydDbc-T6KAO41lN1tqZXZ4mrAFwxZEY3k3zPLXen4VOIDxsX_0houJ9yKiHJu3Xa-jIc1iVKtQfvxoz_nt6h2jwRdfDDztHdIT2YNVHvVavATe_bx8dfGs-eIyepvCyDLbVxlmLLRjsubhvNne24Sd21BDsSmewxV4400GK_C5i9Y6duZGurzDOnbpHjaezc3C3Pm44QLPR7WM-DhqphWAZx6IMJJXKhiKJ4jzjVMqCyLjQsWA2_0i5oSYxPM10ChkIGRMWQRYVEPEiIUQDUeQEdVfrFZwiTMFQqYsoA2DUSMYVUEakq4nGUqnkDA3c0i02dTeNRbtq5388v0D7bgc9RFZcom75WsGVDQRKde0PwCfPQ7TW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA06H9SX6Zx4Nw--tmubpE2eh2PTOYRtMPBh5PIVhrgNtwn6603SdV5A8C0USkOSfrec8x2EbtKIK625CEymmU1QiAmEJnkgbGwvKQitlUf59tL2kN6N2GhNVvdcGADw4DMI3dDf5ZuZXrlSWcPJUNvzJLbRDqOUsoKutTG8nCXZGsIVR6LR6TebzPr_LHQS4WH58g8ZFe9FWlXUK79fgEeew9VShfrjV2vGf0_wANW_CHv4ceOKDtEWTGuoWio24PUPXEP739oPHqGnPrxMgsVq7uzFAgz2bNw3mz3bABQ7cgh2xTNYYC-d6UBFfh-xesfO4EjXWRg3nb5Hgaizc3D3Pm5YR8PW7aDZDtZiC8EkjsUykFQqG4wkivOUUylzIuNcxyKzGQjjhprEcJZqBikIGZMsgjTKIeJ5QogGosgxqkxnUzhBmIKhUudRCpBRIzOugGZEuqpoLJVKTlHdLd14XvTTGJerdvbH82u02x48dMfdTu_-HO253fSAWXGBKsvXFVzasGCprvxh-ARydbgj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+Symposium+on+Computers+and+Communications&rft.atitle=Semi-supervised+Multivariate+Time+Series+Classification+by+Subsample+Correlation+Prediction&rft.au=Su%2C+Yun&rft.date=2023-07-09&rft.pub=IEEE&rft.eissn=2642-7389&rft.spage=1177&rft.epage=1180&rft_id=info:doi/10.1109%2FISCC58397.2023.10217939&rft.externalDocID=10217939