Semi-supervised Multivariate Time Series Classification by Subsample Correlation Prediction
This paper introduces a novel Semi-supervised learning (SSL) model based on subsample correlation (SSC) to address the challenge of Multivariate Time Series (MTS) classification tasks due to the scarcity of labeled data. The proposed method utilizes the coherence property of subsamples from identica...
Saved in:
| Published in | Proceedings - IEEE Symposium on Computers and Communications pp. 1177 - 1180 |
|---|---|
| Main Author | |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
09.07.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2642-7389 |
| DOI | 10.1109/ISCC58397.2023.10217939 |
Cover
| Abstract | This paper introduces a novel Semi-supervised learning (SSL) model based on subsample correlation (SSC) to address the challenge of Multivariate Time Series (MTS) classification tasks due to the scarcity of labeled data. The proposed method utilizes the coherence property of subsamples from identical subjects to devise the pretext task. For labeled time series, SSC conducts supervised classification under the supervision of annotated class labels. For unlabeled time series, SSC uses two subsampling techniques and considers subsamples from the same time series candidate as having a positive relationship and subsamples from different candidates as having a negative relationship. By jointly classifying labeled data and predicting the subsample correlation of unlabeled data, SSC captures useful representations of unlabeled time series. The experimental results on several Multivariate Time Series classification (TSC) datasets demonstrate the effectiveness of the proposed algorithm. |
|---|---|
| AbstractList | This paper introduces a novel Semi-supervised learning (SSL) model based on subsample correlation (SSC) to address the challenge of Multivariate Time Series (MTS) classification tasks due to the scarcity of labeled data. The proposed method utilizes the coherence property of subsamples from identical subjects to devise the pretext task. For labeled time series, SSC conducts supervised classification under the supervision of annotated class labels. For unlabeled time series, SSC uses two subsampling techniques and considers subsamples from the same time series candidate as having a positive relationship and subsamples from different candidates as having a negative relationship. By jointly classifying labeled data and predicting the subsample correlation of unlabeled data, SSC captures useful representations of unlabeled time series. The experimental results on several Multivariate Time Series classification (TSC) datasets demonstrate the effectiveness of the proposed algorithm. |
| Author | Su, Yun |
| Author_xml | – sequence: 1 givenname: Yun surname: Su fullname: Su, Yun email: suyun@imut.edu.cn organization: Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Radar Technology and Application,Hohhot,China |
| BookMark | eNo1kM1Kw0AURkdRsK19A8F5gdT5yWTuLCX4U6gopK5clJvkBq4kbZlJC317kerqO3DgLL6puNrutiTEvVYLrVV4WFZl6cAGvzDK2IVWRvtgw4WYBx_AOmWVysFciokpcpN5C-FGTFP6VkqBM34ivioaOEuHPcUjJ2rl26Ef-YiRcSS55oFkRZEpybLHlLjjBkfebWV9ktWhTjjse5LlLkbqz-IjUsvNL96K6w77RPO_nYnP56d1-Zqt3l-W5eMqY63DmGGOtYPc1AAF5IidRd01OnitwUGbt6YFVzSOCgqorVdUqI4UdMbahmxtZ-Lu3GUi2uwjDxhPm_8z7A8DTFeA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ISCC58397.2023.10217939 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 9798350300482 |
| EISSN | 2642-7389 |
| EndPage | 1180 |
| ExternalDocumentID | 10217939 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i119t-a4ab5842b88684aaf3a1fc19711858d4d2d856c5e6e9a1370e60fe08f233ce3b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:20:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-a4ab5842b88684aaf3a1fc19711858d4d2d856c5e6e9a1370e60fe08f233ce3b3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10217939 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-July-9 |
| PublicationDateYYYYMMDD | 2023-07-09 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-9 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings - IEEE Symposium on Computers and Communications |
| PublicationTitleAbbrev | ISCC |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0008527 |
| Score | 2.2276685 |
| Snippet | This paper introduces a novel Semi-supervised learning (SSL) model based on subsample correlation (SSC) to address the challenge of Multivariate Time Series... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1177 |
| SubjectTerms | Computers Correlation Feature extraction Fluctuations Multivariate Time Series Classification Self-Supervised Semi-Supervised Learning Semisupervised learning Subsample Correlation Time series analysis Training |
| Title | Semi-supervised Multivariate Time Series Classification by Subsample Correlation Prediction |
| URI | https://ieeexplore.ieee.org/document/10217939 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5uJ71M58RvcvDarm3SJjkXx_QwhDkYeBj5eAtD3IZrBf31Jmk7P0DwFgqlIUnfrzzP-yB0k0Vcac1FYJhObYJCTCA0KQJhY3tJQWitPMp3ko1n9H6ezhuyuufCAIAHn0Hohv4u36x15UplQydDbc-T6KAO41lN1tqZXZ4mrAFwxZEY3k3zPLXen4VOIDxsX_0houJ9yKiHJu3Xa-jIc1iVKtQfvxoz_nt6h2jwRdfDDztHdIT2YNVHvVavATe_bx8dfGs-eIyepvCyDLbVxlmLLRjsubhvNne24Sd21BDsSmewxV4400GK_C5i9Y6duZGurzDOnbpHjaezc3C3Pm44QLPR7WM-DhqphWAZx6IMJJXKhiKJ4jzjVMqCyLjQsWA2_0i5oSYxPM10ChkIGRMWQRYVEPEiIUQDUeQEdVfrFZwiTMFQqYsoA2DUSMYVUEakq4nGUqnkDA3c0i02dTeNRbtq5388v0D7bgc9RFZcom75WsGVDQRKde0PwCfPQ7TW |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA06H9SX6Zx4Nw--tmubpE2eh2PTOYRtMPBh5PIVhrgNtwn6603SdV5A8C0USkOSfrec8x2EbtKIK625CEymmU1QiAmEJnkgbGwvKQitlUf59tL2kN6N2GhNVvdcGADw4DMI3dDf5ZuZXrlSWcPJUNvzJLbRDqOUsoKutTG8nCXZGsIVR6LR6TebzPr_LHQS4WH58g8ZFe9FWlXUK79fgEeew9VShfrjV2vGf0_wANW_CHv4ceOKDtEWTGuoWio24PUPXEP739oPHqGnPrxMgsVq7uzFAgz2bNw3mz3bABQ7cgh2xTNYYC-d6UBFfh-xesfO4EjXWRg3nb5Hgaizc3D3Pm5YR8PW7aDZDtZiC8EkjsUykFQqG4wkivOUUylzIuNcxyKzGQjjhprEcJZqBikIGZMsgjTKIeJ5QogGosgxqkxnUzhBmIKhUudRCpBRIzOugGZEuqpoLJVKTlHdLd14XvTTGJerdvbH82u02x48dMfdTu_-HO253fSAWXGBKsvXFVzasGCprvxh-ARydbgj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+Symposium+on+Computers+and+Communications&rft.atitle=Semi-supervised+Multivariate+Time+Series+Classification+by+Subsample+Correlation+Prediction&rft.au=Su%2C+Yun&rft.date=2023-07-09&rft.pub=IEEE&rft.eissn=2642-7389&rft.spage=1177&rft.epage=1180&rft_id=info:doi/10.1109%2FISCC58397.2023.10217939&rft.externalDocID=10217939 |