DeepASD: Facial Image Analysis for Autism Spectrum Diagnosis via Explainable Artificial Intelligence
Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies used deep learning for facial images to diagnose ASD. However, the criteria are still unclear. To address these issues, we applied an explain...
Saved in:
Published in | International Conference on Ubiquitous and Future Networks (Online) pp. 625 - 630 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
04.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2165-8536 |
DOI | 10.1109/ICUFN57995.2023.10200203 |
Cover
Abstract | Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies used deep learning for facial images to diagnose ASD. However, the criteria are still unclear. To address these issues, we applied an explainable artificial intelligence technique to four convolutional neural networks (MobileNet, Xception, EfficientNet, and an ensemble model). We utilized gradient-weighted class activation mapping to suggest ASD diagnostic criteria based on facial morphology features. We achieved a high AUROC of 0.89 with the ensemble models. Our study provides objective and easy-to-understand diagnostic methods for early diagnosis of ASD. |
---|---|
AbstractList | Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies used deep learning for facial images to diagnose ASD. However, the criteria are still unclear. To address these issues, we applied an explainable artificial intelligence technique to four convolutional neural networks (MobileNet, Xception, EfficientNet, and an ensemble model). We utilized gradient-weighted class activation mapping to suggest ASD diagnostic criteria based on facial morphology features. We achieved a high AUROC of 0.89 with the ensemble models. Our study provides objective and easy-to-understand diagnostic methods for early diagnosis of ASD. |
Author | Yang, Minuk Kang, Hyebin Kim, Geun-Hyeon Lee, Tae-Soo Park, Seung |
Author_xml | – sequence: 1 givenname: Hyebin surname: Kang fullname: Kang, Hyebin email: khb1029@naver.com organization: Chungbuk National University Hospital,Medical AI Research Team,Chungcheongbuk-do,Rep. of Korea – sequence: 2 givenname: Minuk surname: Yang fullname: Yang, Minuk email: yhu0409@naver.com organization: Chungbuk National University Hospital,Medical AI Research Team,Chungcheongbuk-do,Rep. of Korea – sequence: 3 givenname: Geun-Hyeon surname: Kim fullname: Kim, Geun-Hyeon email: kgh5408@nate.com organization: Chungbuk National University Hospital,Medical AI Research Team,Chungcheongbuk-do,Rep. of Korea – sequence: 4 givenname: Tae-Soo surname: Lee fullname: Lee, Tae-Soo email: tslee@chungbuk.ac.kr organization: Chungbuk National University,Department of Biomedical Engineering,Chungcheongbuk-do,Rep. of Korea – sequence: 5 givenname: Seung surname: Park fullname: Park, Seung email: spark.cbnuh@gmail.com organization: Chungbuk National University Hospital,Department of Biomedical Engineering,Chungcheongbuk-do,Rep. of Korea |
BookMark | eNo1UM1Kw0AYXEXBWvMGHvYFUnf3y_7EW2haLRQ91J7LJvkSVjbbkKRi395IFQbmMD8wc09uwjEgIZSzBecsfdos9-s3qdNULgQTsOBMsAlwRaJUpwYkA5Bg5DWZCa5kbCSoOxINwydjDATnhsGMVDlil-3yZ7q2pbOeblrbIM2C9efBDbQ-9jQ7jW5o6a7DcuxPLc2dbcLxV_1ylq6-O29dsIWfYv3oanfpCSN67xoMJT6Q29r6AaM_npP9evWxfI237y-bZbaNHefpGNtpRlVbrSRoAKY4SCUSXSkhLQjUhTJlkZgqwSSpGSsAzGTW3BRJJbU2MCePl16HiIeud63tz4f_Y-AH-8JYrA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICUFN57995.2023.10200203 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350335385 |
EISSN | 2165-8536 |
EndPage | 630 |
ExternalDocumentID | 10200203 |
Genre | orig-research |
GrantInformation_xml | – fundername: Health funderid: 10.13039/100018696 – fundername: Ministry of Health funderid: 10.13039/100009647 |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i119t-a023dfa7653733061356247d625a32e7b68cb48d4e44f00b338a76718b4d57783 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:14:50 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-a023dfa7653733061356247d625a32e7b68cb48d4e44f00b338a76718b4d57783 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10200203 |
PublicationCentury | 2000 |
PublicationDate | 2023-July-4 |
PublicationDateYYYYMMDD | 2023-07-04 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-July-4 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Ubiquitous and Future Networks (Online) |
PublicationTitleAbbrev | ICUFN |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211803 |
Score | 1.8419995 |
Snippet | Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 625 |
SubjectTerms | Artificial intelligence Autism Autism spectrum disorder Convolutional neural network Convolutional neural networks Deep learning Diagnosis Explainable artificial intelligence Gradient-weighted class activation mapping Image analysis Morphology Neural networks |
Title | DeepASD: Facial Image Analysis for Autism Spectrum Diagnosis via Explainable Artificial Intelligence |
URI | https://ieeexplore.ieee.org/document/10200203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5sT3pxq7gzB6-JSWYmi7fSGlrBImihtzLLCxTpQpt68Nf7ZtLUKgjeQjYm783kLfO97xFyp6EwBU9xfbNMeralsZelOvTQs88SrZKUKZuHfB7EvSF_GonRpljd1cIAgAOfgW8P3V6-meu1TZXhCo_czlmDNHCeVcVa24QKiyybGavROkF23-8M84GwjGe-bRLu14__aKTi7Eh-SAb1CCr4yLu_LpWvP3-RM_57iEek9V2yR1-2xuiY7MHshBzssA2eEtMFWLRfuw80lzZRTvtT_JnQmpaEovtK2zgPV1Nqu9KXy_WUdiskHl79mEhqAXubaivaXjqUkXvPDq1niwzzx7dOz9s0WfAmYZiVnkTJmEImsWAJY9a6o0fEE4NxkWQRJCpOteKp4cB5EQQKQ1q8GS2a4kYkqMsz0pzNZ3BOqIgwmJOhwFkBXEuhYmZCnaog1iaKIbsgLSuw8aLi0RjXsrr84_wV2bd6c-BYfk2a-N1wgy5AqW6d6r8AocSusQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNSGI7C7eqJWqhjZBopd4qb5Eq1EUl5cDXM3aaUpCQuEWJZVnjcWbxmzcI3Umdq5zGcL5Jwh3T0thJYuk74NknkRRRTITJQ_aysD2gT0M2XBWr21oYrbUFn2nXPNq7fDWTS5MqgxMe2JuzbbTDIKyIy3KtdUqFBIbPjFR4HS-57zQHacYM55lr2oS71QQ_WqlYS5IeoKxaQwkgeXOXhXDl5y96xn8v8hDVv4v28MvaHB2hLT09RvsbfIMnSLW0njdeWw845SZVjjsT-J3gipgEgwOLG6CJ7xNs-tIXi-UEt0osHnz9GHNsIHureivcWFickZ1ng9izjgbpY7_ZdlZtFpyx7yeFw0EyKudRyEhEiLHv4BPRSEFkxEmgIxHGUtBYUU1p7nkCgloYDDZNUMUi2M1TVJvOpvoMYRZAOMd9BnqhqeRMhET5MhZeKFUQ6uQc1Y3ARvOSSWNUyerij_e3aLfd73VH3U72fIn2zB5aqCy9QjWQgb4Gh6AQN1YNvgAEMrIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Ubiquitous+and+Future+Networks+%28Online%29&rft.atitle=DeepASD%3A+Facial+Image+Analysis+for+Autism+Spectrum+Diagnosis+via+Explainable+Artificial+Intelligence&rft.au=Kang%2C+Hyebin&rft.au=Yang%2C+Minuk&rft.au=Kim%2C+Geun-Hyeon&rft.au=Lee%2C+Tae-Soo&rft.date=2023-07-04&rft.pub=IEEE&rft.eissn=2165-8536&rft.spage=625&rft.epage=630&rft_id=info:doi/10.1109%2FICUFN57995.2023.10200203&rft.externalDocID=10200203 |