DeepASD: Facial Image Analysis for Autism Spectrum Diagnosis via Explainable Artificial Intelligence

Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies used deep learning for facial images to diagnose ASD. However, the criteria are still unclear. To address these issues, we applied an explain...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Ubiquitous and Future Networks (Online) pp. 625 - 630
Main Authors Kang, Hyebin, Yang, Minuk, Kim, Geun-Hyeon, Lee, Tae-Soo, Park, Seung
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.07.2023
Subjects
Online AccessGet full text
ISSN2165-8536
DOI10.1109/ICUFN57995.2023.10200203

Cover

Abstract Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies used deep learning for facial images to diagnose ASD. However, the criteria are still unclear. To address these issues, we applied an explainable artificial intelligence technique to four convolutional neural networks (MobileNet, Xception, EfficientNet, and an ensemble model). We utilized gradient-weighted class activation mapping to suggest ASD diagnostic criteria based on facial morphology features. We achieved a high AUROC of 0.89 with the ensemble models. Our study provides objective and easy-to-understand diagnostic methods for early diagnosis of ASD.
AbstractList Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies used deep learning for facial images to diagnose ASD. However, the criteria are still unclear. To address these issues, we applied an explainable artificial intelligence technique to four convolutional neural networks (MobileNet, Xception, EfficientNet, and an ensemble model). We utilized gradient-weighted class activation mapping to suggest ASD diagnostic criteria based on facial morphology features. We achieved a high AUROC of 0.89 with the ensemble models. Our study provides objective and easy-to-understand diagnostic methods for early diagnosis of ASD.
Author Yang, Minuk
Kang, Hyebin
Kim, Geun-Hyeon
Lee, Tae-Soo
Park, Seung
Author_xml – sequence: 1
  givenname: Hyebin
  surname: Kang
  fullname: Kang, Hyebin
  email: khb1029@naver.com
  organization: Chungbuk National University Hospital,Medical AI Research Team,Chungcheongbuk-do,Rep. of Korea
– sequence: 2
  givenname: Minuk
  surname: Yang
  fullname: Yang, Minuk
  email: yhu0409@naver.com
  organization: Chungbuk National University Hospital,Medical AI Research Team,Chungcheongbuk-do,Rep. of Korea
– sequence: 3
  givenname: Geun-Hyeon
  surname: Kim
  fullname: Kim, Geun-Hyeon
  email: kgh5408@nate.com
  organization: Chungbuk National University Hospital,Medical AI Research Team,Chungcheongbuk-do,Rep. of Korea
– sequence: 4
  givenname: Tae-Soo
  surname: Lee
  fullname: Lee, Tae-Soo
  email: tslee@chungbuk.ac.kr
  organization: Chungbuk National University,Department of Biomedical Engineering,Chungcheongbuk-do,Rep. of Korea
– sequence: 5
  givenname: Seung
  surname: Park
  fullname: Park, Seung
  email: spark.cbnuh@gmail.com
  organization: Chungbuk National University Hospital,Department of Biomedical Engineering,Chungcheongbuk-do,Rep. of Korea
BookMark eNo1UM1Kw0AYXEXBWvMGHvYFUnf3y_7EW2haLRQ91J7LJvkSVjbbkKRi395IFQbmMD8wc09uwjEgIZSzBecsfdos9-s3qdNULgQTsOBMsAlwRaJUpwYkA5Bg5DWZCa5kbCSoOxINwydjDATnhsGMVDlil-3yZ7q2pbOeblrbIM2C9efBDbQ-9jQ7jW5o6a7DcuxPLc2dbcLxV_1ylq6-O29dsIWfYv3oanfpCSN67xoMJT6Q29r6AaM_npP9evWxfI237y-bZbaNHefpGNtpRlVbrSRoAKY4SCUSXSkhLQjUhTJlkZgqwSSpGSsAzGTW3BRJJbU2MCePl16HiIeud63tz4f_Y-AH-8JYrA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICUFN57995.2023.10200203
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350335385
EISSN 2165-8536
EndPage 630
ExternalDocumentID 10200203
Genre orig-research
GrantInformation_xml – fundername: Health
  funderid: 10.13039/100018696
– fundername: Ministry of Health
  funderid: 10.13039/100009647
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-a023dfa7653733061356247d625a32e7b68cb48d4e44f00b338a76718b4d57783
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-a023dfa7653733061356247d625a32e7b68cb48d4e44f00b338a76718b4d57783
PageCount 6
ParticipantIDs ieee_primary_10200203
PublicationCentury 2000
PublicationDate 2023-July-4
PublicationDateYYYYMMDD 2023-07-04
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-4
  day: 04
PublicationDecade 2020
PublicationTitle International Conference on Ubiquitous and Future Networks (Online)
PublicationTitleAbbrev ICUFN
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211803
Score 1.8419995
Snippet Early and accurate diagnosis of Autism spectrum disorder (ASD) is crucial, but current diagnoses are subjective, time-consuming, and expensive. Recent studies...
SourceID ieee
SourceType Publisher
StartPage 625
SubjectTerms Artificial intelligence
Autism
Autism spectrum disorder
Convolutional neural network
Convolutional neural networks
Deep learning
Diagnosis
Explainable artificial intelligence
Gradient-weighted class activation mapping
Image analysis
Morphology
Neural networks
Title DeepASD: Facial Image Analysis for Autism Spectrum Diagnosis via Explainable Artificial Intelligence
URI https://ieeexplore.ieee.org/document/10200203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB5sT3pxq7gzB6-JSWYmi7fSGlrBImihtzLLCxTpQpt68Nf7ZtLUKgjeQjYm783kLfO97xFyp6EwBU9xfbNMeralsZelOvTQs88SrZKUKZuHfB7EvSF_GonRpljd1cIAgAOfgW8P3V6-meu1TZXhCo_czlmDNHCeVcVa24QKiyybGavROkF23-8M84GwjGe-bRLu14__aKTi7Eh-SAb1CCr4yLu_LpWvP3-RM_57iEek9V2yR1-2xuiY7MHshBzssA2eEtMFWLRfuw80lzZRTvtT_JnQmpaEovtK2zgPV1Nqu9KXy_WUdiskHl79mEhqAXubaivaXjqUkXvPDq1niwzzx7dOz9s0WfAmYZiVnkTJmEImsWAJY9a6o0fEE4NxkWQRJCpOteKp4cB5EQQKQ1q8GS2a4kYkqMsz0pzNZ3BOqIgwmJOhwFkBXEuhYmZCnaog1iaKIbsgLSuw8aLi0RjXsrr84_wV2bd6c-BYfk2a-N1wgy5AqW6d6r8AocSusQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNSGI7C7eqJWqhjZBopd4qb5Eq1EUl5cDXM3aaUpCQuEWJZVnjcWbxmzcI3Umdq5zGcL5Jwh3T0thJYuk74NknkRRRTITJQ_aysD2gT0M2XBWr21oYrbUFn2nXPNq7fDWTS5MqgxMe2JuzbbTDIKyIy3KtdUqFBIbPjFR4HS-57zQHacYM55lr2oS71QQ_WqlYS5IeoKxaQwkgeXOXhXDl5y96xn8v8hDVv4v28MvaHB2hLT09RvsbfIMnSLW0njdeWw845SZVjjsT-J3gipgEgwOLG6CJ7xNs-tIXi-UEt0osHnz9GHNsIHureivcWFickZ1ng9izjgbpY7_ZdlZtFpyx7yeFw0EyKudRyEhEiLHv4BPRSEFkxEmgIxHGUtBYUU1p7nkCgloYDDZNUMUi2M1TVJvOpvoMYRZAOMd9BnqhqeRMhET5MhZeKFUQ6uQc1Y3ARvOSSWNUyerij_e3aLfd73VH3U72fIn2zB5aqCy9QjWQgb4Gh6AQN1YNvgAEMrIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Ubiquitous+and+Future+Networks+%28Online%29&rft.atitle=DeepASD%3A+Facial+Image+Analysis+for+Autism+Spectrum+Diagnosis+via+Explainable+Artificial+Intelligence&rft.au=Kang%2C+Hyebin&rft.au=Yang%2C+Minuk&rft.au=Kim%2C+Geun-Hyeon&rft.au=Lee%2C+Tae-Soo&rft.date=2023-07-04&rft.pub=IEEE&rft.eissn=2165-8536&rft.spage=625&rft.epage=630&rft_id=info:doi/10.1109%2FICUFN57995.2023.10200203&rft.externalDocID=10200203