Feature Point Identification of Hydropower Plant Based on Improved ORB Algorithm

The traditional ORB algorithm has some problems such as poor feature point recognition, difficult to eliminate mismatching and scale invariance. This paper presents an improved ORB algorithm to identify and match feature points of hydropower plant. First of all, FAST algorithm uses rBRIEF descriptor...

Full description

Saved in:
Bibliographic Details
Published in2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP) pp. 1108 - 1112
Main Authors Xiu, Ji, Hou, Faming, Li, Dexin, Guo, Shuanghao, Bai, Yang, Zhang, Jiajun
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.05.2023
Subjects
Online AccessGet full text
DOI10.1109/ICMSP58539.2023.10169144

Cover

Abstract The traditional ORB algorithm has some problems such as poor feature point recognition, difficult to eliminate mismatching and scale invariance. This paper presents an improved ORB algorithm to identify and match feature points of hydropower plant. First of all, FAST algorithm uses rBRIEF descriptor to describe the detected feature points in the images of hydropower station equipment; Secondly, the feature points extracted by ORB were constructed by Hessian matrix to extract the feature points of hydropower equipment images. Finally, the direction consistency of feature points is used to eliminate the feature points that are not within the threshold range by cosine similarity invariance. The algorithm improves the accuracy of feature point matching, eliminates mismatching feature points and has the advantages of fast matching speed.
AbstractList The traditional ORB algorithm has some problems such as poor feature point recognition, difficult to eliminate mismatching and scale invariance. This paper presents an improved ORB algorithm to identify and match feature points of hydropower plant. First of all, FAST algorithm uses rBRIEF descriptor to describe the detected feature points in the images of hydropower station equipment; Secondly, the feature points extracted by ORB were constructed by Hessian matrix to extract the feature points of hydropower equipment images. Finally, the direction consistency of feature points is used to eliminate the feature points that are not within the threshold range by cosine similarity invariance. The algorithm improves the accuracy of feature point matching, eliminates mismatching feature points and has the advantages of fast matching speed.
Author Zhang, Jiajun
Bai, Yang
Xiu, Ji
Hou, Faming
Li, Dexin
Guo, Shuanghao
Author_xml – sequence: 1
  givenname: Ji
  surname: Xiu
  fullname: Xiu, Ji
  email: jixiu523@126.com
  organization: Changchun Institute of Technology,Changchun,Jilin,130000
– sequence: 2
  givenname: Faming
  surname: Hou
  fullname: Hou, Faming
  email: 971511273@qq.com
  organization: Changchun Institute of Technology,Changchun,Jilin,130000
– sequence: 3
  givenname: Dexin
  surname: Li
  fullname: Li, Dexin
  email: 56508493231@qq.com
  organization: Electric Power Research Institute of State Grid Jilin Electric Power Co. LTD,Changchun,Jilin,130000
– sequence: 4
  givenname: Shuanghao
  surname: Guo
  fullname: Guo, Shuanghao
  email: 1550849311@qq.com
  organization: Changchun Institute of Technology,Changchun,Jilin,130000
– sequence: 5
  givenname: Yang
  surname: Bai
  fullname: Bai, Yang
  email: 1145267440@qq.com
  organization: Changchun Institute of Technology,Changchun,Jilin,130000
– sequence: 6
  givenname: Jiajun
  surname: Zhang
  fullname: Zhang, Jiajun
  email: 15608369511@qq.com
  organization: Electric Power Research Institute of State Grid Jilin Electric Power Co. LTD,Changchun,Jilin,130000
BookMark eNo1j11LwzAYhSPohc79Ay_yB1rzJk2aXG7FucJkxY_rkS5vNdA2JYvK_r0F9eo8cB4OnBtyOYYRCaHAcgBm7uvq6aWRWgqTc8ZFDgyUgaK4IEtTGi0kE0Ixwa5Js0GbPiPSJvgx0drhmHznjzb5MNLQ0e3ZxTCFb4y06e2srO0JHZ3Lephi-Jp5_7ymq_49RJ8-hlty1dn-hMu_XJC3zcNrtc12-8e6Wu0yD2BSZtCVgC2XBaBhwCyC4gVrtbFH6TpUhUHJ9axoVUqtXNuVpWu5YiW0XKNYkLvfXY-Ihyn6wcbz4f-o-AHwGE2I
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMSP58539.2023.10169144
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350336030
EndPage 1112
ExternalDocumentID 10169144
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-9ed71eb2541e9010ae16240b89ac5dfe649e5281eb867586dbf77db26071b28e3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:47 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-9ed71eb2541e9010ae16240b89ac5dfe649e5281eb867586dbf77db26071b28e3
PageCount 5
ParticipantIDs ieee_primary_10169144
PublicationCentury 2000
PublicationDate 2023-May-19
PublicationDateYYYYMMDD 2023-05-19
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-May-19
  day: 19
PublicationDecade 2020
PublicationTitle 2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP)
PublicationTitleAbbrev ICMSP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8352151
Snippet The traditional ORB algorithm has some problems such as poor feature point recognition, difficult to eliminate mismatching and scale invariance. This paper...
SourceID ieee
SourceType Publisher
StartPage 1108
SubjectTerms Cosine similarity
Feature extraction
Hamming distances
Hydroelectric power generation
Hydropower station
Improve ORB
Intelligent control
Mismatching rate
Signal processing
Signal processing algorithms
Title Feature Point Identification of Hydropower Plant Based on Improved ORB Algorithm
URI https://ieeexplore.ieee.org/document/10169144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kycVJ_4mB6_t1rRJk6MbjilsDnWw20j6XnWorZQW0b_epF0VBcFbSAIJeYfvvZf3vY-QcyYAhOHgiVBLL9Kh9jQz6CU8YiYE5KpWb5hMxXgeXS_4Yk1Wr7kwiFgXn6HvhvVfPuRJ5VJlPRdpKhsBbJLNWIqGrNVW5_RV72o4uZtZ97cmoLDQb7f_EE6pcWO0TabtiU25yJNflcZPPn41Y_z3lXZI95uiR2df4LNLNjDbIzPn0FWFXclXWUkbEm66zsrRPKXjd3CqCG9YUKdWVNKBBTGgdrFJLtjxze2AXjw_5MWqfHzpkvno8n449taSCd4qCFTpKYQ4sMEyjwJ0hRcaA2Ex20ilEw4pikghZ9JukS5SEGDSOAbDXJc5wySG-6ST5RkeEGpAJYwbwRlEkUGlIdRCsb4E65LEUh-SrnuO5WvTFWPZvsTRH_PHZMtZxf28B-qEdMqiwlML6KU5qw35CX2roWc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_Dabk2TtDm64eh0m0M32G0kzZsOtZXSIvrXm7SroiB4C_lBQnL43nt53_sQuiBca66YdrgvQ4dKXzqSKHBiRonyNTBRqjcMRzya0usZm63I6iUXBgDK5DNwbbP8y9dpXNhQWct6msJ4AOtog1FKWUXXqvNz2qLV7w7vx8YALikoxHfrBT-kU0rk6G2jUb1nlTDy5Ba5cuOPX-UY_32oHdT8Junh8Rf87KI1SPbQ2Jp0RWZG0mWS44qGu1jF5XC6wNG7troIb5Bhq1eU446BMY3NYBVeMO3buw6-fH5Is2X--NJE097VpBs5K9EEZ-l5IncE6MAz7jKjHtjUCwkeN6itQiFjphfAqQBGQjMltL4C12oRBFoRW2dOkRD8fdRI0gQOEFZaxIQpzoimVIGQ2pdckHaojVEShPIQNe11zF-ruhjz-iaO_ug_R5vRZDiYD_qjm2O0ZV_I_sN74gQ18qyAUwPvuTorH_UTIgKktA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Intelligent+Control%2C+Measurement+and+Signal+Processing+%28ICMSP%29&rft.atitle=Feature+Point+Identification+of+Hydropower+Plant+Based+on+Improved+ORB+Algorithm&rft.au=Xiu%2C+Ji&rft.au=Hou%2C+Faming&rft.au=Li%2C+Dexin&rft.au=Guo%2C+Shuanghao&rft.date=2023-05-19&rft.pub=IEEE&rft.spage=1108&rft.epage=1112&rft_id=info:doi/10.1109%2FICMSP58539.2023.10169144&rft.externalDocID=10169144