Towards Advanced Monitoring for Scientific Workflows
Scientific workflows consist of thousands of highly parallelized tasks executed in a distributed environment involving many components. Automatic tracing and investigation of the components' and tasks' performance metrics, traces, and behavior are necessary to support the end user with a l...
Saved in:
| Published in | 2022 IEEE International Conference on Big Data (Big Data) pp. 2709 - 2715 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Conference Proceeding |
| Language | English |
| Published |
IEEE
17.12.2022
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1109/BigData55660.2022.10020864 |
Cover
| Abstract | Scientific workflows consist of thousands of highly parallelized tasks executed in a distributed environment involving many components. Automatic tracing and investigation of the components' and tasks' performance metrics, traces, and behavior are necessary to support the end user with a level of abstraction since the large amount of data cannot be analyzed manually. The execution and monitoring of scientific workflows involves many components, the cluster infrastructure, its resource manager, the workflow, and the workflow tasks. All components in such an execution environment access different monitoring metrics and provide metrics on different abstraction levels. The combination and analysis of observed metrics from different components and their interdependencies are still widely unregarded.We specify four different monitoring layers that can serve as an architectural blueprint for the monitoring responsibilities and the interactions of components in the scientific workflow execution context. We describe the different monitoring metrics subject to the four layers and how the layers interact. Finally, we examine five state-of-the-art scientific workflow management systems (SWMS) in order to assess which steps are needed to enable our four-layer-based approach. |
|---|---|
| AbstractList | Scientific workflows consist of thousands of highly parallelized tasks executed in a distributed environment involving many components. Automatic tracing and investigation of the components' and tasks' performance metrics, traces, and behavior are necessary to support the end user with a level of abstraction since the large amount of data cannot be analyzed manually. The execution and monitoring of scientific workflows involves many components, the cluster infrastructure, its resource manager, the workflow, and the workflow tasks. All components in such an execution environment access different monitoring metrics and provide metrics on different abstraction levels. The combination and analysis of observed metrics from different components and their interdependencies are still widely unregarded.We specify four different monitoring layers that can serve as an architectural blueprint for the monitoring responsibilities and the interactions of components in the scientific workflow execution context. We describe the different monitoring metrics subject to the four layers and how the layers interact. Finally, we examine five state-of-the-art scientific workflow management systems (SWMS) in order to assess which steps are needed to enable our four-layer-based approach. |
| Author | Loser, Ansgar Lehmann, Fabian Kao, Odej Doehler, Leon Vu, Anh Duc Becker, Soeren Witzke, Joel Bader, Jonathan |
| Author_xml | – sequence: 1 givenname: Jonathan surname: Bader fullname: Bader, Jonathan email: jonathan.bader@tu-berlin.de organization: Technische Universität,Berlin,Germany – sequence: 2 givenname: Joel surname: Witzke fullname: Witzke, Joel email: witzke@zib.de organization: Zuse Institute,Berlin,Germany – sequence: 3 givenname: Soeren surname: Becker fullname: Becker, Soeren email: soeren.becker@tu-berlin.de organization: Technische Universität,Berlin,Germany – sequence: 4 givenname: Ansgar surname: Loser fullname: Loser, Ansgar email: ansgar.loesser@kom.tu-darmstadt.de organization: TU Darmstadt,Germany – sequence: 5 givenname: Fabian surname: Lehmann fullname: Lehmann, Fabian email: fabian.lehmann@informatik.hu-berlin.de organization: Humboldt-Universität zu,Berlin,Germany – sequence: 6 givenname: Leon surname: Doehler fullname: Doehler, Leon email: leon.doehler@tu-berlin.de organization: Technische Universität,Berlin,Germany – sequence: 7 givenname: Anh Duc surname: Vu fullname: Vu, Anh Duc email: vuducanh@informatik.hu-berlin.de organization: Humboldt-Universität zu,Berlin,Germany – sequence: 8 givenname: Odej surname: Kao fullname: Kao, Odej email: odej.kao@tu-berlin.de organization: Technische Universität,Berlin,Germany |
| BookMark | eNo1z7tOAzEQQFEjQQEhf0Bh0e_i8dtlCE8piIIgymiyHkcWwUbeFRF_TwFUtzvSPWPHpRZi7BJEDyDC1XXe3eCExlgreimk7EEIKbzVR2wenAdrjfZCGzhlel0P2OLIF_ELy0CRP9WSp9py2fFUG38ZMpUppzzwt9re074exnN2knA_0vyvM_Z6d7tePnSr5_vH5WLVZYAwdQG1NWCTV8l44zH5qLY-IZAJIDBERLc1LkRSMTjwQoUUrSYwg4tSazVjF79uJqLNZ8sf2L43_zPqB-dGRQs |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/BigData55660.2022.10020864 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665480451 1665480459 |
| EndPage | 2715 |
| ExternalDocumentID | 10020864 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: 10.13039/501100001659 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i119t-9a46516f83f5858af8d3b8fa1e5910a9daa7b579de3d9718039fd64e15c7d2443 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:13:57 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i119t-9a46516f83f5858af8d3b8fa1e5910a9daa7b579de3d9718039fd64e15c7d2443 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_10020864 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Dec.-17 |
| PublicationDateYYYYMMDD | 2022-12-17 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Conference on Big Data (Big Data) |
| PublicationTitleAbbrev | Big Data |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9135913 |
| Snippet | Scientific workflows consist of thousands of highly parallelized tasks executed in a distributed environment involving many components. Automatic tracing and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2709 |
| SubjectTerms | Analytical models Behavioral sciences Big Data Limiting Measurement Monitoring Scientific Workflow Scientific Workflow Management System Task analysis |
| Title | Towards Advanced Monitoring for Scientific Workflows |
| URI | https://ieeexplore.ieee.org/document/10020864 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9dsN81jk6OvUjwUDy30VpJMIkVpxW4R_PUm2a2iIJhTCIS8CN-XyTczCF2BVgxoEERzMSDcK0mUcpQ4p7Q3FmwsSW0xlqMpf5iJWeusnn1hvPdZfOaLVM1_-bBym2Qq69OcUlLyDupUSjbOWm0gUVrq_s3i6c7URkSGUsaX32BQbDv8SJ2SkWO4h8bbMRvByHOxqW3hPn6FY_z3pPZR79tJDz9-wc8B2vHLQ8QnWQa7xtft3z5uLm2y3uHIT3G-y1kfhJOdPLys3tc9NB3eT25HpE2MQBaU6ppokzKYy6BYiGxfmaCAWRUM9SKiv9FgTGVFpcEz0BF8SqYDSO6pcBVEPGdHqLtcLf0xwhRo5VzwQTrNoWQ2UgAjg4NIXaiHcIJ6acnz1yb2xXy72tM_2s_Qbtr5JPig1Tnq1m8bfxFhu7aX-bg-ASyamc8 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLxmu2kemxx9laq1eGiht5KnFEsrdovgrzfJbhUFwZxCICRhCN-XyTczAFxYKYjFniFJWRtRJzgSwmBkjJBOaatDi2qLPu8O6f2Ijepg9RQL45xL4jOXxW76y7dzs4yushZOJSU5XQcbjFLKqnCtOpUozmXravJ8o0rFAkfJw9uv3c5WU34UT0nY0dkG_dWqlWTkJVuWOjMfvxIy_ntbO6D5HaYHn74AaBesudkeoIMkhF3Ay_p3H1bXNvrvYGCoMN3mpBCC0VPup_P3RRMMO7eD6y6qSyOgCcayRFLFGubcC-ID3xfKC0u08Ao7FvBfSatUoVkhrSNWBvjJifSWU4eZKWxAdLIPGrP5zB0AiC0ujPHOcyOpzYkOJEBxb2wgL9hZfwia8cjj1yr7xXh12qM_xs_BZnfw2Bv37voPx2ArWiHKP3BxAhrl29KdBhAv9Vky3SdsgJ0c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Big+Data+%28Big+Data%29&rft.atitle=Towards+Advanced+Monitoring+for+Scientific+Workflows&rft.au=Bader%2C+Jonathan&rft.au=Witzke%2C+Joel&rft.au=Becker%2C+Soeren&rft.au=Loser%2C+Ansgar&rft.date=2022-12-17&rft.pub=IEEE&rft.spage=2709&rft.epage=2715&rft_id=info:doi/10.1109%2FBigData55660.2022.10020864&rft.externalDocID=10020864 |