Towards Advanced Monitoring for Scientific Workflows

Scientific workflows consist of thousands of highly parallelized tasks executed in a distributed environment involving many components. Automatic tracing and investigation of the components' and tasks' performance metrics, traces, and behavior are necessary to support the end user with a l...

Full description

Saved in:
Bibliographic Details
Published in2022 IEEE International Conference on Big Data (Big Data) pp. 2709 - 2715
Main Authors Bader, Jonathan, Witzke, Joel, Becker, Soeren, Loser, Ansgar, Lehmann, Fabian, Doehler, Leon, Vu, Anh Duc, Kao, Odej
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.12.2022
Subjects
Online AccessGet full text
DOI10.1109/BigData55660.2022.10020864

Cover

Abstract Scientific workflows consist of thousands of highly parallelized tasks executed in a distributed environment involving many components. Automatic tracing and investigation of the components' and tasks' performance metrics, traces, and behavior are necessary to support the end user with a level of abstraction since the large amount of data cannot be analyzed manually. The execution and monitoring of scientific workflows involves many components, the cluster infrastructure, its resource manager, the workflow, and the workflow tasks. All components in such an execution environment access different monitoring metrics and provide metrics on different abstraction levels. The combination and analysis of observed metrics from different components and their interdependencies are still widely unregarded.We specify four different monitoring layers that can serve as an architectural blueprint for the monitoring responsibilities and the interactions of components in the scientific workflow execution context. We describe the different monitoring metrics subject to the four layers and how the layers interact. Finally, we examine five state-of-the-art scientific workflow management systems (SWMS) in order to assess which steps are needed to enable our four-layer-based approach.
AbstractList Scientific workflows consist of thousands of highly parallelized tasks executed in a distributed environment involving many components. Automatic tracing and investigation of the components' and tasks' performance metrics, traces, and behavior are necessary to support the end user with a level of abstraction since the large amount of data cannot be analyzed manually. The execution and monitoring of scientific workflows involves many components, the cluster infrastructure, its resource manager, the workflow, and the workflow tasks. All components in such an execution environment access different monitoring metrics and provide metrics on different abstraction levels. The combination and analysis of observed metrics from different components and their interdependencies are still widely unregarded.We specify four different monitoring layers that can serve as an architectural blueprint for the monitoring responsibilities and the interactions of components in the scientific workflow execution context. We describe the different monitoring metrics subject to the four layers and how the layers interact. Finally, we examine five state-of-the-art scientific workflow management systems (SWMS) in order to assess which steps are needed to enable our four-layer-based approach.
Author Loser, Ansgar
Lehmann, Fabian
Kao, Odej
Doehler, Leon
Vu, Anh Duc
Becker, Soeren
Witzke, Joel
Bader, Jonathan
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Bader
  fullname: Bader, Jonathan
  email: jonathan.bader@tu-berlin.de
  organization: Technische Universität,Berlin,Germany
– sequence: 2
  givenname: Joel
  surname: Witzke
  fullname: Witzke, Joel
  email: witzke@zib.de
  organization: Zuse Institute,Berlin,Germany
– sequence: 3
  givenname: Soeren
  surname: Becker
  fullname: Becker, Soeren
  email: soeren.becker@tu-berlin.de
  organization: Technische Universität,Berlin,Germany
– sequence: 4
  givenname: Ansgar
  surname: Loser
  fullname: Loser, Ansgar
  email: ansgar.loesser@kom.tu-darmstadt.de
  organization: TU Darmstadt,Germany
– sequence: 5
  givenname: Fabian
  surname: Lehmann
  fullname: Lehmann, Fabian
  email: fabian.lehmann@informatik.hu-berlin.de
  organization: Humboldt-Universität zu,Berlin,Germany
– sequence: 6
  givenname: Leon
  surname: Doehler
  fullname: Doehler, Leon
  email: leon.doehler@tu-berlin.de
  organization: Technische Universität,Berlin,Germany
– sequence: 7
  givenname: Anh Duc
  surname: Vu
  fullname: Vu, Anh Duc
  email: vuducanh@informatik.hu-berlin.de
  organization: Humboldt-Universität zu,Berlin,Germany
– sequence: 8
  givenname: Odej
  surname: Kao
  fullname: Kao, Odej
  email: odej.kao@tu-berlin.de
  organization: Technische Universität,Berlin,Germany
BookMark eNo1z7tOAzEQQFEjQQEhf0Bh0e_i8dtlCE8piIIgymiyHkcWwUbeFRF_TwFUtzvSPWPHpRZi7BJEDyDC1XXe3eCExlgreimk7EEIKbzVR2wenAdrjfZCGzhlel0P2OLIF_ELy0CRP9WSp9py2fFUG38ZMpUppzzwt9re074exnN2knA_0vyvM_Z6d7tePnSr5_vH5WLVZYAwdQG1NWCTV8l44zH5qLY-IZAJIDBERLc1LkRSMTjwQoUUrSYwg4tSazVjF79uJqLNZ8sf2L43_zPqB-dGRQs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigData55660.2022.10020864
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665480451
1665480459
EndPage 2715
ExternalDocumentID 10020864
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 10.13039/501100001659
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-9a46516f83f5858af8d3b8fa1e5910a9daa7b579de3d9718039fd64e15c7d2443
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:57 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-9a46516f83f5858af8d3b8fa1e5910a9daa7b579de3d9718039fd64e15c7d2443
PageCount 7
ParticipantIDs ieee_primary_10020864
PublicationCentury 2000
PublicationDate 2022-Dec.-17
PublicationDateYYYYMMDD 2022-12-17
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Big Data (Big Data)
PublicationTitleAbbrev Big Data
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9135913
Snippet Scientific workflows consist of thousands of highly parallelized tasks executed in a distributed environment involving many components. Automatic tracing and...
SourceID ieee
SourceType Publisher
StartPage 2709
SubjectTerms Analytical models
Behavioral sciences
Big Data
Limiting
Measurement
Monitoring
Scientific Workflow
Scientific Workflow Management System
Task analysis
Title Towards Advanced Monitoring for Scientific Workflows
URI https://ieeexplore.ieee.org/document/10020864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J08qVnyTg9dsN81jk6OvUjwUDy30VpJMIkVpxW4R_PUm2a2iIJhTCIS8CN-XyTczCF2BVgxoEERzMSDcK0mUcpQ4p7Q3FmwsSW0xlqMpf5iJWeusnn1hvPdZfOaLVM1_-bBym2Qq69OcUlLyDupUSjbOWm0gUVrq_s3i6c7URkSGUsaX32BQbDv8SJ2SkWO4h8bbMRvByHOxqW3hPn6FY_z3pPZR79tJDz9-wc8B2vHLQ8QnWQa7xtft3z5uLm2y3uHIT3G-y1kfhJOdPLys3tc9NB3eT25HpE2MQBaU6ppokzKYy6BYiGxfmaCAWRUM9SKiv9FgTGVFpcEz0BF8SqYDSO6pcBVEPGdHqLtcLf0xwhRo5VzwQTrNoWQ2UgAjg4NIXaiHcIJ6acnz1yb2xXy72tM_2s_Qbtr5JPig1Tnq1m8bfxFhu7aX-bg-ASyamc8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLxmu2kemxx9laq1eGiht5KnFEsrdovgrzfJbhUFwZxCICRhCN-XyTczAFxYKYjFniFJWRtRJzgSwmBkjJBOaatDi2qLPu8O6f2Ijepg9RQL45xL4jOXxW76y7dzs4yushZOJSU5XQcbjFLKqnCtOpUozmXravJ8o0rFAkfJw9uv3c5WU34UT0nY0dkG_dWqlWTkJVuWOjMfvxIy_ntbO6D5HaYHn74AaBesudkeoIMkhF3Ay_p3H1bXNvrvYGCoMN3mpBCC0VPup_P3RRMMO7eD6y6qSyOgCcayRFLFGubcC-ID3xfKC0u08Ao7FvBfSatUoVkhrSNWBvjJifSWU4eZKWxAdLIPGrP5zB0AiC0ujPHOcyOpzYkOJEBxb2wgL9hZfwia8cjj1yr7xXh12qM_xs_BZnfw2Bv37voPx2ArWiHKP3BxAhrl29KdBhAv9Vky3SdsgJ0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Big+Data+%28Big+Data%29&rft.atitle=Towards+Advanced+Monitoring+for+Scientific+Workflows&rft.au=Bader%2C+Jonathan&rft.au=Witzke%2C+Joel&rft.au=Becker%2C+Soeren&rft.au=Loser%2C+Ansgar&rft.date=2022-12-17&rft.pub=IEEE&rft.spage=2709&rft.epage=2715&rft_id=info:doi/10.1109%2FBigData55660.2022.10020864&rft.externalDocID=10020864