A Smart and Intelligent Way of Diagnosing of Heart Disease in Short Span of Time Through Integrated Algorithms of IoT, FC and DL

Chronic diseases including cancer, diabetes, heart disease, and respiratory disorders are major hazards to human health in the global context. Particularly heart disease may be difficult to diagnose because of its wide range of characteristics and symptoms. Concurrently, feature extraction is carrie...

Full description

Saved in:
Bibliographic Details
Published in2024 1st International Conference on Innovative Sustainable Technologies for Energy, Mechatronics, and Smart Systems (ISTEMS) pp. 1 - 6
Main Authors Malviya, Ashwini, Singhal, Rishi, S, Asha
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.04.2024
Subjects
Online AccessGet full text
DOI10.1109/ISTEMS60181.2024.10560242

Cover

Abstract Chronic diseases including cancer, diabetes, heart disease, and respiratory disorders are major hazards to human health in the global context. Particularly heart disease may be difficult to diagnose because of its wide range of characteristics and symptoms. Concurrently, feature extraction is carried out for other pertinent features. Combining these characteristics, an Optimised Passed on Convoluted Neural Network (CCNN) is used as a diagnostic system. The performance of the CCNN is increased by optimising its hyperparameters using Galactic Swarm Optimisation (GSO). Performance study highlights the advantages of the suggested GSO-CCNN model, which outperforms other models in terms of accuracy. This means that the recommended approach is more efficient than traditional models, as shown by the thorough comparison study.
AbstractList Chronic diseases including cancer, diabetes, heart disease, and respiratory disorders are major hazards to human health in the global context. Particularly heart disease may be difficult to diagnose because of its wide range of characteristics and symptoms. Concurrently, feature extraction is carried out for other pertinent features. Combining these characteristics, an Optimised Passed on Convoluted Neural Network (CCNN) is used as a diagnostic system. The performance of the CCNN is increased by optimising its hyperparameters using Galactic Swarm Optimisation (GSO). Performance study highlights the advantages of the suggested GSO-CCNN model, which outperforms other models in terms of accuracy. This means that the recommended approach is more efficient than traditional models, as shown by the thorough comparison study.
Author Singhal, Rishi
Malviya, Ashwini
S, Asha
Author_xml – sequence: 1
  givenname: Ashwini
  surname: Malviya
  fullname: Malviya, Ashwini
  email: ashwini.malviya@atlasuniversity.edu.in
  organization: ATLAS SkillTech University,Department of uGDX,Mumbai,Maharashtra,India
– sequence: 2
  givenname: Rishi
  surname: Singhal
  fullname: Singhal, Rishi
  email: rishisinghal@niet.co.in
  organization: Noida Institute of Engineering & Technology,Department of Electrical and Electronics Engineering,Greater Noida,Uttar Pradesh,India
– sequence: 3
  givenname: Asha
  surname: S
  fullname: S, Asha
  email: asha_s2015@cms.ac.in
  organization: School of Mangement - UG, JAIN (Deemed to be University),Department of Management,Bangalore,Karnataka,India
BookMark eNo1UMtOwzAQNBIcoPQPOJg7KXach32s0lekIg4J4lht6nViKbWrJBx649NJCkgrjXZnNKPZB3LrvENCnjlbcM7Ua16U67ciYVzyRcjCaMFZnIwY3pC5SpUUMRMyCqPknnwvaXGCbqDgNM3dgG1ra3QD_YQL9YauLNTO99bV07bDSbqyPUKP1DpaNH48FGdwE13aE9Ky6fxX3VzN6g4G1HTZ1r6zQ3PqJ1Xuyxe6ya6Jq_0juTPQ9jj_wxn52KzLbBfs37d5ttwHlnM1BCpFE4m4YqHQqUZ9HEdgJA3TSikt01QqgFgkYExSMQbHmAMir1SFogIjZuTp19ci4uHc2bH15fD_GPEDzoJe5A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISTEMS60181.2024.10560242
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350384246
EndPage 6
ExternalDocumentID 10560242
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-97ef435b023d7dedcedc3e48f0d999d87789aa536aff6b00ac51aee1b9be3baf3
IEDL.DBID RIE
IngestDate Wed Jul 03 05:40:33 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-97ef435b023d7dedcedc3e48f0d999d87789aa536aff6b00ac51aee1b9be3baf3
PageCount 6
ParticipantIDs ieee_primary_10560242
PublicationCentury 2000
PublicationDate 2024-April-26
PublicationDateYYYYMMDD 2024-04-26
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-26
  day: 26
PublicationDecade 2020
PublicationTitle 2024 1st International Conference on Innovative Sustainable Technologies for Energy, Mechatronics, and Smart Systems (ISTEMS)
PublicationTitleAbbrev ISTEMS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.871116
Snippet Chronic diseases including cancer, diabetes, heart disease, and respiratory disorders are major hazards to human health in the global context. Particularly...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Cardiac Disease Prediction
Computational modeling
Deep Learning
Edge-Fog-Cloud Computing
Feature extraction
Fog Computing
GSO-CCNN Model
Healthcare Applications
Heart
Iot
Medical services
Predictive models
Real-Time Processing and Ensemble Learning
Real-time systems
Smart Healthcare
Title A Smart and Intelligent Way of Diagnosing of Heart Disease in Short Span of Time Through Integrated Algorithms of IoT, FC and DL
URI https://ieeexplore.ieee.org/document/10560242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7YDogTIIZ4K0gcabesbdocpz20ITYhtRO7TUmTsgnWotEd4MRPx263IZCQuPXhJlGc1HZsfybkRknR5L4jLamEa7msyS2wVWBfGQErpCEa5WHOcMT7Y_du4k3WyepFLowxpgg-MzZeFr58ncUrPCqrY5V4lCkVUvEDXiZr7ZLrNW5mfRBG3WHIEYIKDL-ma2_of1ROKQRHb5-MNl2W8SLP9ipXdvzxC43x32M6ILXvHD36sJU-h2THpEfks0XDBSwGKlNNB1u0zZw-yneaJbRTBtbBB3jXN0jaKV00dJ7ScAbKOA3hB4GvMTuERmUdn6KxAlZC09bLU7ac57PFG1INsuiW9tpFj537Ghn3ulG7b61rLFhzxkQOjDEJaEwKRLf2NYaE6tgxbpA0NKiOOvD9QEjpOVwmCYctKmOPSWOYEso4SibOMammWWpOCBUKhKH2FBcOQ7NJSWhVIpyQx7iW7JTUcPqmryWMxnQzc2d_PD8ne8hFdN00-QWp5suVuQQNIFdXBee_AIQdsJw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86QX1SceK3EXy03dKm6fI49kGr2xDa4d5G0qRu6FqZ3YM--aebpNtEQfCtafNRkkvuLnf3OwBuOKMO8V1mMU6xhZFDLKWrqH0lqaKQOq2Xlzn9AQmG-G7kjZbB6iYWRkppnM-krR-NLV_kyUJfldV0lnjNUzbBlocx9spwrW1wvUTOrIVR3OlHRINQKdXPwfaqxY_cKYZ1dPfAYDVo6THybC8Kbicfv_AY__1X-6D6HaUHH9b85wBsyOwQfDZhNFPkAFkmYLjG2yzgI3uHeQrbpWudaqBLgdRV26WRBk4zGE2UOA4jdUTozzo-BMZlJh_TmQGWELD58pTPp8Vk9qZrhXl8C7stM2K7VwXDbiduBdYyy4I1RYgWamlkqmQmrpi38IV2ChWJK3EjrQslPIqG7zcoY55LWJoStUlZ4iEmJeKUS5ez1D0ClSzP5DGAlCt2KDxOqIu04sSZ6pVpQCEPEcHQCajq6Ru_lkAa49XMnf7x_grsBHG_N-6Fg_szsKtXVBtyHHIOKsV8IS-UPFDwS0MFX-85s-k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+1st+International+Conference+on+Innovative+Sustainable+Technologies+for+Energy%2C+Mechatronics%2C+and+Smart+Systems+%28ISTEMS%29&rft.atitle=A+Smart+and+Intelligent+Way+of+Diagnosing+of+Heart+Disease+in+Short+Span+of+Time+Through+Integrated+Algorithms+of+IoT%2C+FC+and+DL&rft.au=Malviya%2C+Ashwini&rft.au=Singhal%2C+Rishi&rft.au=S%2C+Asha&rft.date=2024-04-26&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FISTEMS60181.2024.10560242&rft.externalDocID=10560242